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Abstract: | will present recent progress in building a rigorous theory to understand how scientists, machines, and future quantum computers could
learn models of our quantum universe. The talk will begin with an experimentally feasible procedure for converting a quantum many-body system
into a succinct classical description of the system, its classical shadow. Classical shadows can be applied to efficiently predict many properties of
interest, including expectation values of local observables and few-body correlation functions. I will then build on the classical shadow formalism to
answer two fundamental questions at the intersection of machine learning and quantum physics. Can classical machines learn to solve challenging
problems in quantum physics? And can quantum machines learn exponentially faster than classical machines?

Zoom link: https://pitp.zoom.us/j/97994359596 2pwd=UIBwc2hoSkNzWIZvM 101RWErU1U2QT09
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Learning in
the quantum universe

Presenter: Hsin-Yuan Huang (Robert)
Collaborators: Richard Kueng, Giacomo Torlai, Victor Albert, John Preskill,
Sitan Chen, Jordan Cotler, Jerry Li, Michael Broughton, Jarrod McClean, and more
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Motivation

® A central goal of science is to learn how our universe operates.
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Motivation

® A central goal of science is to learn how our universe operates.

® Because our universe is inherently quantum, the ability to efficiently learn in the quantum
world could lead to many advances.
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Motivation

® A central goal of science is to learn how our universe operates.

® Because our universe is inherently quantum, the ability to efficiently learn in the quantum
world could lead to many advances.
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Motivation

® To accelerate and automate the development of (quantum) science, it is important to
understand how to design better algorithms to learn in the quantum universe.
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A cartoon depiction of learning — Quantum matter 2T

Image credits: (Top left) https:/fAww.energy. gov/science/doe-axplainacatalysts (Top right) https://theconversation.com/as-
pharmaceytical-use-centinues-to-rise-side-effects-are-becoming-a-costly-heslth-issue-105494 (Bottom left) hitps://news mit edu/2019/
ultra-quantum-matter-ugm-research-given-8m-beeat-0529 (Bottem right) httgs:/fwww,nature,com/articles/d41586-019-03213-z
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Overview

How to efficiently learn in the quantum universe?

mearning with classical machine]

What can classical machines learn?
Can classical ML perform
better than non-ML algorithms?
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. J

(Learning with quantum machines\

Can quantum machines learn faster
and/or predict more accurately
than classical machines?

&

N s

Page 7/59



Overview

( Predicting many properties of a quantum system from very few measurements, Nature Physics
"‘ Power of data in quantum machine learning, Nature Communications

}-{ Provably efficient machine learning for quantum many-body problems, Science

Related works:
Efficient estimation of Pauli observables by derandomization, Physical Review Letter
Mixed-state entanglement from local randomized measurements, Physical Review Letter
Emergent randemness and benchmarking from many-body quantum chaos, te appear on Nature
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Classical shadow formalism

* How can classical machines “see” quantum many-body systems?

[HKP20] Hsin-Yuan Huang, Richard Kueng, John Preskill. Predicting many properties of a quantum system from very few measurements, Nature Physics, 2020.
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Classical shadow formalism

¢ What do we mean by “seeing” a quantum system?

e Converting the quantum system to a classical form that accurately
captures many properties of the quantum system.

010101001010
100100101001

111100010101

Predicting ...

Unknown Efficient

. : Predict Properties
Quantum System Classical Representation P

[HKP20] Hsin-Yuan Huang, Richard Kueng, John Preskill. Predicting many properties of a quantum system from very few measurements, Nature Physics, 2020.
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Classical shadow formalism

* Why do we want to construct classical representations of quantum systems?
4+ We often want to know what the quantum system is.

4+ Many quantum applications require an interface between
the classical and the quantum realm (e.g., variational algorithms).

[HKP20] Hsin-Yuan Huang, Richard Kueng, John Preskill. Predicting many properties of a quantum system from very few measurements, Nature Physics, 2020.
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Standard approach

¢ Quantum state tomography:

Learn a complete representation of an n-qubit quantum state.
(d < d mattix; d=2%)

¢ Sample-optimal protocol (Haah et al.; O’Donnel, Wright):
@ Sample complexity: @(2%")
:[E]: Quantum resource: ®(n2?") qubits + exponentially long circuits
‘ Classical storage: Q(2°")

E Classical post-processing: Q(2%")
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Classical shadow formalism

P Theorem 1 [HKP20] \

There exists procedure that guarantees the following.
1. Given B, M, ¢ > 0, the procedure learns a classical representation of

an unknown quantum state p from
T=0(B log(M)/ez) measurements.

2. Subsequently, given any Oy, ..., O,, with B > maxllOillghadow,
the procedure can use the classical representation to predict 0, ..., 0y,
where [0, — tr(O,p)| < ¢, for all i.

\ _

For example:
e M=10% B =1, then naively we need 10%/€2 measurements.

e This theorem shows that we only need 610og(10)/e? measurements.

Furthermore, we don't need to know Oy, ..., O), in advance.
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The Procedure:
Data Acquisition Phase

Repeat the following 7" times:

Few Repetitions
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The Procedure:
Data Acquisition Phase

Repeat the following 7" times:

e Sample a random unitary U, to rotate the quantum system.

E.g., measure
each qubit in Few Repetitions

a random basis
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E.g., measure

each qubit in
a random basis
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The Procedure:
Data Acquisition Phase

Repeat the following 7" times:

e Sample a random unitary U, to rotate the quantum system.

e Measure the system in the computational basis |p;) € {0,1}".

Store the “classical shadow”: [s;) = U;lbi).
|b,)

Few Repetitions
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The Procedure:

Prediction Phase

Given S(p) = {|sy), ..., |s7)} (the classical shadow),

how to predict properties of the quantum state p?

* E[|s;Xs;|]] = A (p). (#: some CPTP map)

=d (00— [E[«%‘I(IS;XS,-I)] = P X -/%_1(|55XS;|)-

Algorithm for predicting tr(Op): (median-of-means)

Compute X;

Predict 0 =

= tr(OM7'(|s;Xs;])),Vi=1,...,T.
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i=1 i=T-T/K+1
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The Procedure:
Data Acquisition Phase

Repeat the following 7" times:
e Sample a random unitary U, to rotate the quantum system.
e Measure the system in the computational basis |p;) € {0,1}".

Store the “classical shadow”: |s;) = U;lbi).

E.g., measure |b,) |b,)
each qubit in Few Repetitions
a random basis W ™
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The Procedure:

Prediction Phase

Given S(p) = {|sy), ..., |s7)} (the classical shadow),

how to predict properties of the quantum state p?

* E[|s;Xs;|]] = A (p). (#: some CPTP map)

=d (00— [E[«%‘I(IS;XS,-I)] = P X -/%_1(|55XS;|)-

Algorithm for predicting tr(Op): (median-of-means)

Compute X;

Predict 0 =

= tr(OM7'(|s;Xs;])),Vi=1,...,T.
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Classical shadow formalism

P Theorem 1 [HKP20] \

There exists procedure that guarantees the following.
1. Given B, M, ¢ > 0, the procedure learns a classical representation of

an unknown quantum state p from
T=0(B log(M)/ez) measurements.

2. Subsequently, given any Oy, ..., O,, with B > maxllOillghadow,
the procedure can use the classical representation to predict 0, ..., 0y,
where [0, — tr(O,p)| < ¢, for all i.

\ _

For example:
e M=10% B =1, then naively we need 10%/€2 measurements.

e This theorem shows that we only need 610og(10)/e? measurements.

Furthermore, we don't need to know Oy, ..., O), in advance.
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Classical shadow formalism

Few Repetitions |

— [— ) i
—c o}~ I_ * Predicting ...
:% §-: Classical . m m
T - I Representation
— ——
Quantum System Measurements
Data Acquisition Phase Prediction Phase

Possible Properties

e Quantum Fidelity x:izgleme"t E:::‘s;ement

|-| 2-point Correlations @ Hamiltonian n Local Observables

[HKP20] Hsin-Yuan Huang, Richard Kueng, John Preskill. Predicting many properties of a quantum system from very few measurements, Nature Physics, 2020.
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Overview

( Predicting many properties of a quantum system from very few measurements, Nature Physics

Related works:
Efficient estimation of Pauli observables by derandomization, Physical Review Letter
Mixed-state entanglement from local randomized measurements, Physical Review Letter
Emergent randemness and benchmarking from many-body quantum chaos, te appear on Nature
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Overview

( Predicting many properties of a quantum system from very few measurements, Nature Physics
"‘ Power of data in quantum machine learning, Nature Communications

}-{ Provably efficient machine learning for quantum many-body problems, Science

Related works:
Efficient estimation of Pauli observables by derandomization, Physical Review Letter
Mixed-state entanglement from local randomized measurements, Physical Review Letter
Emergent randemness and benchmarking from many-body quantum chaos, te appear on Nature

Pirsa: 22110052 Page 23/59



Classical ML for quantum problems

e Can classical machines learn to solve challenging problems in quantum physics?

e And can they yield better solutions than non-ML algorithms?

Physical world Classical machine

[HKT+21] Huang, Kueng, Torlai, Albert, Preskill. Provably efficient machine learning for quantum many-body problems, Science, 2022.
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Predicting ground states: Task

e Givenx € [—1,1]" that describes an n-qubit Hamiltonian H(x), the machine predicts
a classical representation (e.g., classical shadow) of the ground state p(x) of H(x).

* Vector x specifies laser intensities, few-body interactions, magnetic fields, etc.

Classical machine 1010011000111

~g e
i gk‘”l LAY
R

Predicting ...

H Parameters describing @ Classical representation
a physical Hamiltonian of the ground state

[HKT+21] Huang, Kueng, Torlai, Albert, Preskill. Provably efficient machine learning for quantum many-body problems, Science, 2022.

Pirsa: 22110052 Page 25/59



Computational hardness

1D
* This problem is *extremely* hard! 0:0:02020+0

» Consider a smooth class of n-qubit 2D Hamiltonians H(x) with spectral gap 1, 2D
and the machine only predicts 1-body observable O in ground state p(x).

e Furthermore, we only care about average prediction error.

[HKT+21] Huang, Kueng, Torlai, Albert, Preskill. Provably efficient machine learning for quantum many-body problems, Science, 2022.
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Computational hardness

1D
* This problem is *extremely* hard! 0+030-0-0-0

» Consider a smooth class of n-qubit 2D Hamiltonians H(x) with spectral gap 1, 2D
and the machine only predicts 1-body observable O in ground state p(x).

e Furthermore, we only care about average prediction error.

~

Assuming RP # NP, then no randomized classical algorithm can achieve
an average prediction error < 1/4 within poly(n) time.

A RP # NP: NP-complete problems cannot be solved

in randomized polynomial time.

[HKT+21] Huang, Kueng, Torlai, Albert, Preskill. Provably efficient machine learning for quantum many-body problems, Science, 2022.
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Predicting ground states: Task

* Can classical ML algorithms do something useful for this challenging problem?

Classical machine

1010011000111

100K ;| F>

Predicting ...

H Parameters describing @ Classical representation
a physical Hamiltonian of the ground state

[HKT+21] Huang, Kueng, Torlai, Albert, Preskill. Provably efficient machine learning for quantum many-body problems, Science, 2022.

Pirsa: 22110052 Page 28/59



Predicting ground states: Task

Training data: {x, —> o (p(x,))}}_,

Parameters describing Classical representation
a physical Hamiltonian of the ground state
Quantum many-body
Synthesize gn_:un(l:! SRS / Perform

in the Lab Pt e Measurements

5~ vee and other examples

Classical ML 1010011000111
100 7% | F 011
Predicting ... 110343300

u R
Mmoo

H Parameters describing @ Classical representation
a physical Hamiltonian of the ground state

[HKT+21] Huang, Kueng, Torlai, Albert, Preskill. Provably efficient machine learning for quantum many-body problems, Science, 2022.
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Predicting ground states: Task

Classical shadow

Training data: {x, >0 (p(x)})_,

Parameters describing Classical representation
a physical Hamiltonian of the ground state
Quantum many-body
Synthesize gn—:uml:! Le / Perform

in the Lab Pt a Measurements

7 «es and other examples

Classical ML

Predicting ...

Mmoo

H Parameters describing @ Classical representation
a physical Hamiltonian of the ground state

[HKT+21] Huang, Kueng, Torlai, Albert, Preskill. Provably efficient machine learning for quantum many-body problems, Science, 2022.
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Predicting ground states: Theorem

N

Assuming RP # NP, then no randomized classical algorithm can achieve
an average prediction error < 1/4 within poly(n) time.

Classical algorithm

- &
spectral gap 1

1-body observable

average prediction error 1/4

[HKT+21] Huang, Kueng, Torlai, Albert, Preskill. Provably efficient machine learning for quantum many-body problems, Science, 2022.
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Predicting ground states: Theorem

P oo 1 S

A classical ML algorithm can achieve an average prediction error < ¢
using poly(n) training data and computational time.

Classical algorithm Classical ML (trained with data)

2D ‘Q any constant dimension /

spectral gap 1 any constant spectral gap
1-body observable any local observable
average prediction error 1/4 any average prediction error € = O(1)

[HKT+21] Huang, Kueng, Torlai, Albert, Preskill. Provably efficient machine learning for quantum many-body problems, Science, 2022.
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Predicting ground states: Theorem

IR Thoorom 1 N

A classical ML algorithm can achieve an average prediction error < €
using poly(n) training data and computational time.

A classical ML model

)
Xy
® 5]
©
?
® X2
X

[HKT+21] Huang, Kueng, Torlai, Albert, Preskill. Provably efficient machine learning for quantum many-body problems, Science, 2022.
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Predicting ground states: Theorem

Classical algorithm Classical ML (trained with data)

2D c any constant dimension J

spectral gap 1 any constant spectral gap
1-body observable any local observable
average prediction error 1/4 any average prediction error ¢ = O(1)

We proved that a poly-time classical ML algorithm (w/ data) can predict
much better than any poly-time classical algorithm.

[HKT+21] Huang, Kueng, Torlai, Albert, Preskill. Provably efficient machine learning for quantum many-body problems, Science, 2022.
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Predicting ground states: Theorem

The question ®: The answer €9:
Why ML can be more useful than Generalizing from data can be
non-ML algorithms? easier than computing everything

G . .

[HKT+21] Huang, Kueng, Torlai, Albert, Preskill. Provably efficient machine learning for quantum many-body problems, Science, 2022.
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Predicting ground states: Theorem

Data contain computational power

(e.g., nature operates quantumly)

The question ®: The answer €9:
Why ML can be more useful than Generalizing from data can be

non-ML algorithms? easier than computing everything

€s

Quantum
Computation
(BQP)

Classical

Classical
Algorithm Al :Ir:_thm
(BPP) ”

w/ data

[HBM+21] Huang, Broughton, et al. Power of data in quantum machine learning. Nature Communications, 2021
[HKT+21] Huang, Kueng, Torlai, Albert, Preskill. Provably efficient machine learning for quantum many-body problems, Science, 2022.
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2D random Heisenberg model

We consider training data size N = 100, 7' = 500 randomized measurements for constructing classical shadows.
The best ML model is chosen from Gaussian kernel method, infinite-width neural networks, and /,-Dirichlet kernel.

(@) 2p anti-ferromagnetic (b) Exact values from DMRG ML predictions
random Heisenberg model - il
H= Z Ji(X: X; + YiY; + Z,Z;)
(i4) L 0.5

- 0.0

Spin j

Q-0-0-©Q
®

22 22
23 23
24 24
25 25
*The random J considered in (b) s
—I\Il"\vl(\ll.)hll\lhl‘\:I"l’-"ljfl‘f!it.l:—l‘i.l\!?".\_';;gt‘::g!] —l\ll"l"ll\l-l‘h-ll\l\!!l:L‘\J.:“!El‘rri-ll:.-l.\!\‘h\":;m.\_‘::ggl 10
Spin i Spini COHG'?IIOI’]
function

[HKT+21] Huang, Kueng, Torlai, Albert, Preskill. Provably efficient machine learning for quantum many-body problems, Science, 2022.
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Classifying quantum phases: Theorem
AR .

If there exists a nonlinear function of few-body reduced density matrices
for classifying the phases, then the classical ML algorithm can efficiently
learn to classify these phases.

L )

* The assumption is believed to hold for gapped quantum systems.

1010011000111 Classical ML

Predicting ...
il Ll
@ Classical representation ok Quantum

of the ground state phases of matter

o0 ..
ee Irivial

edo Symmetry-broken

&?, Topological

[HKT+21] Huang, Kueng, Torlai, Albert, Preskill. Provably efficient machine learning for quantum many-body problems, Science, 2022.
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1D Symmetry protected topological phases

We consider T = 500 randomized measurements to construct classical shadows for each state.
The classical unsupervised ML model is a kernel PCA using the shadow kernel.

Unsupervised ML at 6 = 0.5 (d) Unsupervised ML at & = 3.0

¢
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[HKT+21] Huang, Kueng, Torlai, Albert, Preskill. Provably efficient machine learning for quantum many-body problems, Science, 2022.

Pirsa: 22110052 Page 39/59



Overview

How to efficiently learn in the quantum universe?

Can classical ML perform
better than non-ML algorithms?
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mearning with classical machinesx

What can classical machines learn?

o/
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Overview

How to efficiently learn in the quantum universe?

(Learning with quantum machines\

Can quantum machines learn faster
and/or predict more accurately
than classical machines?

&
N o
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Classical agent

Receive, process, and store

classical information

Physical
&meun | 5
' Measurements
@
@
(:lassical /\/./') \'.\ ’% Classical
Memory P . = Computation

v
[HKP21] Huang, Kueng, Preskill. Information-theoretic bounds on quantum advantage in machine learning, Physical Review Letters, 2021,

[CCHL21] Chen, Cotler, Huang, Li. Exponential separations in learning with and without quantum memory, FOCS, 2021.
[HBC+] Huang, Broughton, Cotler, Chen, Li, Mohseni, Neven, Babbush, Kueng, Preskill, McClean. Quantum advantage in learning from experiments, Science, 2022.
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Classical vs Quantum

® What are the advantage of a quantum agent over a classical agent?

® Could quantum technology fundamentally alter our ability to learn about the physical world?

Classical Quantum
’ information ’ information 3%

Physical system Classical agent Physical system Quantum agent
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Learning a state

® Assume the only unknown in the entire universe is an n-qubit state p.
® Classical agent can perform any measurement on p in each experiment.

® Quantum agent can obtain and store p coherently from each experiment.

Classical Quantum
’ information ’ information %

Physical system Classical agent Physical system Quantum agent
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Quantum advantage
in predicting Pauli observables

® The classical/quantum agent learns about the unknown n-qubit state p.

® Subsequently, the agent predicts Tr(Pp) for any observable P € {I,X, Y, Z}®".

Classical agent needs €2(2") experiments to predict an adversarially chosen P,
but quantum agent only needs () experiments to predict all 4" observables.
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Quantum advantage
in predicting Pauli observables

® The classical/quantum agent learns about the unknown n-qubit state p.

® Subsequently, the agent predicts Tr(Pp) for any observable P € {I,X, Y, Z}®".

Classical agent needs €2(2") experiments to predict an adversarially chosen P,
but quantum agent only needs () experiments to predict all 4" observables.

Exponential quantum advantage is present even when the state p is

a classical distribution over product states (no entanglement!).
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Quantum advantage
in predicting Pauli observables

® The classical/quantum agent learns about the unknown n-qubit state p.

® Subsequently, the agent predicts Tr(Pp) for any observable P € {I,X, Y, Z}®".

Classical agent needs €2(2") experiments to predict an adversarially chosen P,
but quantum agent only needs () experiments to predict all 4" observables.

Uncertainty principle significantly hinders the learning ability of classical agents,

but surprisingly not the ability of a quantum agent.
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Exponential qguantum advantage

To predict non-commuting observables O, O,, ...,
classical agent suffers from uncertainty principle,
quantum agent does not.
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Exponential qguantum advantage

To predict non-commuting observables O, O,, ..., To estimate property of principal component,
classical agent suffers from uncertainty principle, classical agent needs exponential time,
quantum agent does not. quantum agent needs polynomial.
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Exponential qguantum advantage

To predict non-commuting observables O, O,, ..., To estimate property of principal component,
classical agent suffers from uncertainty principle, classical agent needs exponential time,
quantum agent does not. quantum agent needs polynomial.

Uncovering symmetry in dynamics

Classifying dynamics with or without
time-reversal symmetry

il
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Exponential qguantum advantage

To predict non-commuting observables O, O,, ..., To estimate property of principal component,
classical agent suffers from uncertainty principle, classical agent needs exponential time,
quantum agent does not. quantum agent needs polynomial.

Uncovering symmetry in dynamics Learning physical dynamics
Classifying dynamics with or without To learn a polynomial-time quantum process,
time-reversal symmetry a classical agent requires exponential experiments,

a quantum agent requires polynomial.

il
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Exponential qguantum advantage

Predicting many incompatible observables Performing quantum PCA

Proven using
learning-theoretic techniques

To predict
classical age
quantum ag

Un

Clz
ti

i
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Experiment 1

Information is lost

Experiment 2
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Demonstration on Sycamore:
Quantum advantage in learning states

Utilizing a total of 40 qubits

6
. 101 —= Acc=70% (Q)

"j | o 2 105 ® Acc=70%(C) 4
« S 3 -- Awc=70%(C.LB) &,
Rl £ 10 //&\

8 ® o>
o 10 ® // oﬂo
HE) 2 “ // Q;\q
310 e
£ =
= 10 o
0 /,
10

I I 1 1 I 1 1 1 I 1
2 4 6 8 1012 14 16 18 20
n (system size)

Sycamore Processor

[HFP22] Huang, Flammia, Preskill. Foundations for learning from noisy quantum experiments, QIP, 2022.
[HBC+] Huang, Broughton, Cotler, Chen, Li, Mohseni, Neven, Babbush, Kueng, Preskill, McClean. Quantum advantage in learning from experiments, Science, 2022.
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Demonstration on Sycamore:
Quantum advantage in learning states

Utilizing a total of 40 qubits

6
101 —— Acc=70% (Q)
2 405 ® Acc=70%(C) 5
© —=- Acc=70% (C, LB)1%
E 4 - ' \C\
£ 10 ’Q
(] 7 N/
Stored % 3 x /, \)r,
o)
© 10 7 0o
© & //Q;\q
© ‘IO2 ® 7
0 /
£ %
= 10 5
0 /,
10

I I 1 1 I 1 1 1 I 1
2 4 6 8 10121416 18 20
n (system size)

Sycamore Processor

[HFP22] Huang, Flammia, Preskill. Foundations for learning from noisy quantum experiments, QIP, 2022.
[HBC+] Huang, Broughton, Cotler, Chen, Li, Mohseni, Neven, Babbush, Kueng, Preskill, McClean. Quantum advantage in learning from experiments, Science, 2022.
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Demonstration on Sycamore:
Quantum advantage in learning dynamics
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[HFP22] Huang, Flammia, Preskill. Foundations for learning from noisy quantum experiments, QIP, 2022.
[HBC+] Huang, Broughton, Cotler, Chen, Li, Mohseni, Neven, Babbush, Kueng, Preskill, McClean. Quantum advantage in learning from experiments, Science, 2022.
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(d) sycamore processor
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Overview

How to efficiently learn in the quantum universe?

(Learning with quantum machines\

Can quantum machines learn faster
and/or predict more accurately
than classical machines?

&
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Overview

How to efficiently learn in the quantum universe?

mearning with classical machine]

What can classical machines learn?
Can classical ML perform
better than non-ML algorithms?
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(Learning with quantum machines\

Can quantum machines learn faster
and/or predict more accurately
than classical machines?
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Conclusion

® Significant progress in understanding how to learn in the quantum universe. But
most on lower-level tasks (predicting properties, classifying phases, etc.).

® How to create rigorous ML algorithms for higher-level tasks:
designing quantum circuits / protocols / algorithms, discovering new physics?
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Long-term ambitions

® Develop our understanding of learning to accelerate/automate scientific
development (and, perhaps, give rise to an algorithmic theory of science).

® Build a quantum machine capable of learning and discovering new facets of our
universe beyond humans and classical machines.

Al imagination of itself learning and discovering new facets of our quantum universe (Credit: DALL-E)
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