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Abstract: In the early 1980s, axions and WIMPs were identified as promising dark matter candidates. The last forty years have seen a spectacularly
successful experimental program attempting to discover the WIMPs, with sensitivity that has by now improved by many orders of magnitude
compared to the earliest results. The parallel program to search for axions has made less progress and has reached the necessary sensitivity only over
a very limited mass range. However, progress has recently accelerated, with the invention of many new axion detection techniques that may
eventually provide a definitive answer to the question of whether the dark matter is made of axions. | will review some of these new devel opments
with emphasis on Fermilab's program, including ADMX- Extended Frequency Range and Broadband Reflector Experiment for Axion Detection
(BREAD).

Zoom link: https://pitp.zoom.us/j/972344217352pwd=UGNJIRWXY MKErRmdWSnJiWTdoOFNazZz09
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* WIMPs and WIMP-like

» Dramatic progress in attempted WIMP * Axions and ALPs
detection over last decade- many models * Previous experiments not sensitive enough to test most

previously considered promising are now important models.
excluded. Relatively few experiments.

Direct searches will become background New techniques needed to reach required sensitivity.
limited by neutrinos over next 10 years.
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Diversity of Techniqgues- Many New Ones

o g i Solar Axions
. Dish antenna Light Shining Through Walls” (ALPS) (CAST, IAXO)
Resonant Cavity (ADMX, HAYSTAC, CAPP) (BREAD, BRASS) !

MAGNET

Matched Fabry-
Perot cavities

Tunéng Rod

Iilu.i,'llL'lLUnL'lCI
(e.g., SQUID)

SR ARIADNE
Dielectric Radiators (MADMAX,
DM-induced oscillating Superconducting ORPHEUS)

L ick-up coil
magnetic fux p-;_ 4

Toroidal magnet
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Axion Electrodynamics

Axions interact weakly with photons.

Besides the normal electric field E(x,t) and magnetic field B(x,t), there is an axion field a(x,t).
Maxwell’s equations modified with new terms to include effects of a.

The new field is always multiplied by the very small axion — photon coupling g4,

V o= Ya~ B : V(L

* There are plane wave solutions for the a(x, t), oscillating with a frequency corresponding to the axion
mass (w, = mgc</h).

a(x,t)c /ppy cos(wyt — kx)

Pirsa: 22110049

Page 5/63




Large Background Magnetic Field

* First step to discover axions: get a big magnet

* In the presence of a static magnetic field B,, the axion field sources an
effective oscillating electric current J,
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Oscillating Fictitious Current

* Will produce the same electromagnetic response as a normal electric current.
* Oscillates at frequency w, determined by axion mass

Ju(®

1]
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Electric and Magnetic Field Response

* There is also an oscillating electric field in the axial direction
* Relative strength of the oscillating electric and magnetic fields depends on boundary
conditions & and size of apparatus compared to axion wavelength

Ja(®)
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Axion Detection Through Magnetic Flux

* Collect the magnetic flux sourced by J, with a transformer coil and measure

induced current with a SQUID.
* Works for solenoidal magnets (ADMX-SLIC, DMRADIO) or toroidal (ABRACADABRA,

SHAFT)
* Sensitive to light axions with wavelength big compared to magnet size.

____magnetizing
M coil

¥ pickup coil

calibration loop

SHAF

permeability sensing coil

ADMX- SLIC
Sikivie, Sullivan and Tanner, 2014

Gramolin et al., Nature Physics 17, 79-84, 2021
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Emission of Electromagnetic Wave From Conducting Surface

Insert a conducting surface into the magnet bore.
Currents will appear in the conductor driven by the axion induced electric field

oscillations.
A traveling electromagnetic wave is emitted from the surface to satisfy boundary

conditions.

EHZO
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“Dish Antenna” Experiments

Arrange for the axion induced surface emission to be focused
onto a detector.

Signal is very weak. Only around 1026 watts for a big magnet.
detector

) 1 B Y Pom | Bayy 2 (1 geV\*
Pgignar = 8.27-107°W . ( : )( ) ( )(— ( )
i 10m? /\10 Tesla) \0.3 GeV/em? J\3.92- 10710 GeV-! ) s

More on this later...

Horns, Jaeckel, Lindner, Lobanov, Redondo and Ringwald, 2012
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Signal Enhancement in a Resonant Cavity

Build a metal box (cavity) inside the magnet
The conducting cavity walls emit radiation
Cavity will resonate at discrete frequencies when integer number of

wavelengths fit inside.
Resonance condition when  @cavity = @axion = —2— Power enhancement!
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Pumped Cavity Mode

Power buildup occurs when cavity resonance frequency is matched to
axion mass.
Signal Power ~10-22-10-23 W at 1 GHz for typical cavity and magnet

parameters.
Three orders of magnitude more than a non-resonant dish antenna.

Experiments
RBF (1980s)

U Florida
ADMX
HAYSTAC
CAPP/CULTASK
KLASH

CAST- RADES

Pierre Sikivie,
“Experimental Tests of
the Invisible Axion”
1983 PRL
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Complementarity of Detection Techniques
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ADMX Collaborati on

The
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ADMX

Field Cancellation
Coil

1923eds waep

oy
=
SQUID Amplifier g_
Package T
®
=
3
-
o
Dilution Refrigerator 3
g
Antennas
2]
8 Tesla Magnet %
(7]
©
o
Microwave Cavity m

Tuning Rods

Page 16/63

Pirsa: 22110049



Magnet: 8- Tesla Solenoid with 60 cm bore

Resonant Cavity with Tuning Rods
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Gear Box Connection TM,,, E-Field for Cavity Cross Section Gear Box Connection fntenna Gear Box
to a Tuning Rod to Antenna

To Stepper Motor To Stepper Motor

G10 Shaft

G10 Shaft

'ﬂIi ¥

Transmission Measurement Reflection Measurement

Network Analyzer e Network Analyzer
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Low Noise Amplifiers

* To reach sensitivity of DFSZ axion models requires noise levels
that were beyond state-of-the-art a few years ago.

System noise temperature of 300-500 mK typical in ADMX since
introduction of Microstrip Squid Amplifier in 2016- order of
magnitude lower then previous generation.

Possible because of developments in Quantum Information
Science community for applications such as Qubit readout:
Microstrip Squid Amplifiers (Clarke group @ UC Berkeley)
Josephson Parametric Amplifiers (Siddiqi group @ UC
Berkeley, Buckley & Murch @Washingto U.).
Traveling Wave Parametric Amplifiers (MIT Lincoln Labs).
Wide instantaneous bandwidth- up to an octave.

Post amplification at 4 Kelvin using commercially available HFET
technology.

Cold RF system needs capability for in-situ calibration and
diagnostic functions.
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Josephson Parametric Amplifiers

* LC oscillator with nonlinear inductance
provided by Josephson Junctions.

amplified signal
Geometric capacitance SQUID Josephson Junction

Squid loop: flux-
~ tunable nonlinear
inductance

®pump

—

. Non-linear
» Power transfer from pump tone to signal R ... \ \
tone. ==

/

* Nearly lossless amplification in principle—can ANV —

approach quantum limit of added noise. i . W/WW\}
i mslgmtl
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Josephson Parametric Amplifiers

* LC oscillator with nonlinear inductance
provided by Josephson Junctions.

amplified signal
Geometric capacitance SQUID Josephson Junction

Squid loop: flux-
 tunable nonlinear
inductance

. i Non-linear
* Power transfer from pump tone to signal Opep \ \

Medium
tone.

l

* Nearly lossless amplification in principle—can AVAVAVAVAVAVAVAVEREN

approach quantum limit of added noise. B L W/WW\}
i mslgmtl
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Now i\
Wide-Band Josephson

commercially Foramatric e ifir

ava i I a b I e I Superconducting Low-Noise
[ ] Ay =

Amplifier for Quantum Computing .

Raytheon BBN's WB-1PA

1-IdEf of gain FOSt an d
amplif 1

ith an external bias tee hlg h-fldel lty
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gh Raytheon BBN tributor Quantum Mi

readout
o in the

Benefits n—HCrOWO\{E
' domain

Features
» Gain: 20 dB

Gain Measured at 1§ mK
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Noise reduction by averaging

World’s Most Sensitive RF Receiver

—
&
s
g

1 RF photon

per minute
30 days '
. of integration

15 3.0 4.5 P IE
log (N)

We are systematics-limited for signals of 1026 W
— 0.1% of DFSZ axion power!
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Operating Procedure Calibration Signal

k]()*u'l candidate: 896448 MHz
S
B

* The cavity frequency is scanned over a region
until the desired SNR is achieved.

* Convolve with filter matched to expected axion
line shape.

» ~10%independent measurements on each axion
linewidth, averaged to reduce noise by v10°

* Examine combined power spectrum for excess
power.

» Excess power regions can be statistical
fluctuations, synthetically injected signals, RF
interference, or axions

» Excess power regions are rescanned to see if they
persist

- L L 1 L )
8.0640 B8.9642 B8.9644 8.9646 8.9648 8.9650
frequency [Hz) x10%
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You might have an axion if the signal...

Can’t be seen in the room outside of the magnetic Frequency At Same Not  Enha
field [MHz] Persistence Frequency in Air on Resonance
839.669
Persists all the time 810.268
860.000
Follows the Lorentzian lineshape of the cavity :
. signal
Is suppressed in non TM,, modes L
injection
Was not a synthetic axion signal injected by the

calibration team
Scales with the B2 of the magnet
Has an annual frequency modulation

v
v
v
7
v
v
v
‘/
v
/
v
v
v

. . 1020.000
We haven’t seen any candidates which pass all

these tests.

Bartram et al., Arxiv 2010.00169
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New results from 2020-2021 running

‘ i Axion Mass (peV)
Axion Mass (peV) 10!

3.0 3.2 3.4 3.6 3.8

i HAYSTAC

ADMX (this work)
N-body
B Maxwellian
650 700 700 800 850 900 950 1000
Frequency (MHz)

1 i

Frequency (MHz)

Most recent: Bartram et al., Arxiv 2010.00169
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End of run— broken helium liquifier Preparations for new run
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Extension of Sensitivity to Higher Frequen _é

 Effective scan rate of ADMX =~ 1 MHz/ day
* As we move up in frequency f,

* Volume per cavity decreases as 1/f

* Resonator quality factor decreases as 1/f2/3

* Noise power from Standard Quantum Limit increases as f.
* Need to increase number of cavities, magnetic field, Q to maintain

signal power as frequency increases.
Scan Rate Vs Frequency & other parameters

e x> )" ]
— = 1.68 GHz/vear -
dt = H & o (ll 30 (l (,;H:i_

- B r V\2/0; ’
(s \L) (\ ;) (1(_11_11) (ln {

Stronger Magnet Superconducting

or Dielectric
Resonators
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Magnets

* Current ADMX magnet

» 8.5-Tesla x 60 cm solenoid (normally
operated at 7.6 Tesla)

* Nb-Ti superconductor at 4 Kelvin

» 25 years old-- Manufactured in 1993
by Wang NMR, Livermore CA.

* A step up to higher field requires different
superconductor technology.
NbTi -> 10 Tesla
Nb,Sn -> 15 Tesla

BI-2212, YBCO -> 30 Tesla or more,
but technology is not yet mature.

30 mm diameter magnet x 30 tesla at
National High Magnetic Field Lab
(Tallahassee) in 2019.

Meter scale 20-tesla magnet
demonstrated by Commonwealth
Fusion Systems in Fall 2021.

Pirsa: 22110049
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Next ADMX Magnet

Surplus MRI magnet at University of lllinois Chicago.

Being acquired by Fermilab for next generation of
ADMX: ADMX Extended Frequency Range

9.4 Tesla peak field with 800 mm warm bore.

Was the world’s highest field MRI magnet in 2003.
Order of magnitude more stored energy than current
magnet.

Current ADMX

Peak Field 76T

Bore diameter 530 mm 800 mm
Magnet length 1117 mm 3100 mm
Cryostat diameter 1295 mm 2580 mm
Stored Energy 16.5MJ 140 MJ
Weight 6 tons 45 tons
Helium consumption 3 liters/ hour 0.35 liters'hour
Current 204 Amps 220 Amps
Persistent current No Yes
Orientation Vertical Horizontal
Manufacturer Wang NMR GE Medical Systems
Manufacture date 1993 2003
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ADMX Extended Frequency Range at Fermilab ~ 2026




Resonators

Hexagonally packed array of 18-
cavities operating in 2-4 GHz range
(8.3-16.5 peV) with sensitivity to
DFSZ axions.

Tuned with piezoelectric actuators.
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ADMX Resonators

2022-2023 2023-2024 2025-20277?

1030-1500 MHz . 4-Cavity. Array 18-Cavity array for MRI magnet
8 piezoelectric actuators 9300-4000 MHz

1500-2300 MHz

Used in 2016-2021 Runs
580-1030 MHz

Large tuning rod
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R&D Towards Large Volume, High Frequency Resonators

Challenging to fill a large volume with small
tunable structures (“Swiss Watch” problem)
Number of elements goes as f3
Explore systems that allow simultaneous tuning
of many elements with only a few mechanical
motions.

* Photonic bandgap cavity

* “Comb Cavity”

* Electronic fine tuning using nonlinear

dielectrics

Comb cavity (FNAL)

Pirsa: 22110049

“Pizza” Cavity (U. Florida)

Array of posts (LLNL)
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ADMX Future Sensitivity
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Complementarity of Detection Techniques
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Axion Induced Radiation from A Magnetized Metal Slab

* Axions interact with a static magnetic E; =0
field producing an oscillating parallel
electric field in free space

* A conducting surface in this field emits a
plane wave perpendicular to surface.

e Radiated power is very low:

Pionar = 8.27 - 10°2°W . ( A )( By ) PDOM ( 8ayy )3 | eV
= % 10 m?/\ 10 Tesla) \0.3 GeV/em?J\3.92- 10716 GeV-! m,

* But no detector tuning is required!
“Dish antenna” (Horns et @b, 2012)
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Magnetic Field Configuration

* Need to maximize component of magnetic field parallel to radiating surface
» Spherical dish geometry not a good match to conventional magnet types.

BRASS experiment: Planar array of
permanent magnets

Spherical dish radiator from Horns et al.
concept paper:

Detector

Parabolic Antenna

Le Hoang Nguyen, Patras 2019

http://wwwiexp.desy.de/groups/astroparticle/brass/brassweb.htm
Horns, Jaeckel, Lindner, Lobanov, Redondo & Ringwald, 2012 40
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Large Solenoids

* How to use large volume solenoids to detect axions?

B,2V Magnet Application/ Location Fleld Bore Energy | Cost
(T2m3) Technology (m) (M) (SM)
12000 ITER CS Fusion/sn CICC Cadarache 6400  >500

5300 CMS  Detector/Ti SRC CERN 38 6 2660  >458! _
ITER 2.6 m bore x13 Tesla
650 Tore  Fusion/TiMono  Cadarache 9 1.8 600 : et _-

Supra Ventilated

430 Iseult MRI/Ti SRC CEA - 338 - Artist View
e of CMS Solenoid

320 ITER Fusion/Sn CICC JAEA 13 bt 640
CsMC

250 60 T out HF/HTS CicC MagLab 42 0.4 : 1100
250 Magnex MRI/Mono Minnesota 1058 8 0:28 286
190 Magnex MRI/Mono Juelich 9.4 0.9 190
70 45 T out HF/Nb.Sn CICC MaglLab 14 0.7 100

12 ADMX Axion/NbTi U Wash 7 0.5 = 14

mono

900 MHz ~ NMR/Snh mono MaglLab 2Ll ghatal ] 40
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“Coaxial Dish”: Optical Concentrator for Solenoid Magnets

* Rays emitted from cylindrical inner surface of solenoid are focused to a
point after two reflections. .
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Design Legacy- 19t" Century Lighthouse Mirrors

In 1809, Bordier-Marcet invented the
‘Fanal Sidereal’ reflector where two
parabolic reflecting surfaces were
placed one above the other. Each of
the reflecting surfaces had a central
hole where the lamp flame was
placed. The Fanal Sidereal reflector
was first used in the harbor
lighthouse in Honfleur, France and
the design was patented in 1812.

Bordier-Marcet's ‘Fanal Sidereal Reflector. (1809) Fanal Sidereal Lantern. (1811)
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Th ree Types Of Expe rlment Heterodyne detection

Heterodyne detection

. Downconvert signal frequency by mixing with a local oscillator.

. Excellent for measuring narrow spectral features.

. Ultimate sensitivity governed by Standard Quantum Limit (SQL)

Thoise = hf /Kp

Bolometer
Absorb optical power on a “black” surface & measure temperature.
Intrinsically broadband- single device may cover decades of wavelength.
No intrinsic frequency resolution.
Not subject to Standard Quantum Limit.
Detection of 102> W KSVZ axion signal within one year requires Noise Equivalent S
Power (NEP) ~10722W /v/Hz. Two orders of magnitude beyond state-of-art. Heat Capaciy C

Temparature T
Photon counting

Simple counting experiment similar to WIMP searches.

Background rate as low as ~1 event/day needed to cover mass range up to 0.1 eV.
This is beyond current capability, but photon counting technology is evolving
rapidly, driven by quantum information science applications.

Bolometer
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Th ree Types Of Expe rlment Heterodyne detection

Heterodyne detection

. Downconvert signal frequency by mixing with a local oscillator.

. Excellent for measuring narrow spectral features.

. Ultimate sensitivity governed by Standard Quantum Limit (SQL)

Thoise = hf /Kp
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Absorb optical power on a “black” surface & measure temperature.
Intrinsically broadband- single device may cover decades of wavelength.
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Not subject to Standard Quantum Limit.
Detection of 102> W KSVZ axion signal within one year requires Noise Equivalent G
Power (NEP) ~10722W /v/Hz. Two orders of magnitude beyond state-of-art. Heat Capaciy C

Temparature T
Photon counting

Simple counting experiment similar to WIMP searches.

Background rate as low as ~1 event/day needed to cover mass range up to 0.1 eV.
This is beyond current capability, but photon counting technology is evolving
rapidly, driven by quantum information science applications.

Bolometer
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Sensitivity

* 10 m2x (10 T)? radiator

* 100-day integration time

PP | " MR |
10°* 10~
Axion Mass [eV]
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Single Photon Detectors

Microwave Mm IR Visible uv
1 GHz 10GHz 100GHz 1THz 10 THz 100THz 1000THz 1PHz

Photomultiplier

Photodiode, SPAD, SIPM

HEMT

Superconducting paramp JPA, TWPA
Photomixers SIS, HEM
Semiconductor bolometer
Transition Edge Sensor (TES)
Kinetic Inductance Detector (KID)
Superconducting Nanowire SNSPD
Qubit

Quantum Capacitance Detector
Current Biased Josephson Junction
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Sensitivity Projections for Various Sensors
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NIST/ MIT Superconducting Nanowire Single Photon Detectors with
backgrounds <1/day at 0.8 eV.
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*Based on WSi thin film from Varun Verma, NIST

*Detector fabricated by llya Charaev, MIT
*400 x 400 um? area

Figures from Sae Woo Nam (NIST) *[lluminated with 1550nm light

See “Detecting Dark Matter with Superconducting Nanowires”, Yonit Hochberg et al., PRL 123 (2019)
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Sensitivity Projections for Various Sensors
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[Liu et al, BREAD cgjlab.,
arXiv:2111.12103, PRL 128 (2022) 131801]
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InfraBREAD- Dark Photon Search with SNSPDs

* Dark photon dark matter search—similar to axions but no magnet needed.

* Photon counting experiment with SNSPD device from MIT operating in near infrared
~(1-2 microns)

Pulse Tube Cooler

( ;Jllhmlic)n. . i ! PrOjectEd SE“Slthlty

Source

I _Dark Photon Limits

, N Solar cc
He ——— An et al
™~ This Ex

cryocoole

o
photo -7
Sensor on

XY

motion
stage
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Optical Characterization of Focal Properties

Directly measure focal properties of reflector using a laser and

rotating platform.

Clearly shows inadequacy of conventional machining
processes for obtaining optical surfaces.

Tests of hand polishing to smooth the surface didn’t improve
the situation—it’s not trivial to make a good mirror!

Focus at 2*R2

Video Camera

Adapter plate

Adjustable
height post

Optical breadboard
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Mechanical Tolerancing

Ray tracing studies were used to determine mechanical tolerances.
Dark matter velocity dispersion limits focal spot to ~ 1 mm?

Requires few micron surface accuracy and smoothness on short
distance scales to preserve 1 mm focusing and minimize sensors size.
We studied effect of sinusoidal “ripple” defects in the optical

geometry to determine maximum allowed fabrication errors.

Distribution r I(r

Spherical
dish

Amplitude of Defect [microns]

T T L 5

100x exaggerated i 0.5 1.0 1:5

velocity effect Radius r [mm] G
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First Prototype Reflector — Coordinate Measuring Machine

Radius Residual [um]

horizontal

-1.0 ). 0.0
Angle [rad]

- T
"y l“ oV n
.o - ':' “

Radius Residual[um]

vertical

5 ) ' 100
Mechanical Touches Height [mm)]
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Single Point Diamond Turning of Aluminum Optics

In industry, high-precision lathes with diamond cutting tools are used to fabricate metal reflecting optics.
Process is commonly used for mirrors with shapes that are too difficult to produce by grinding glass or ceramics.
Also used for optics that need to be cryogenically cooled.

Can achieve <100 nm precision on aluminum, with sizes up to 1-meter (much better than we need)

BREAD optical will be fabricated at Lawrence Livermore National Lab.

Requires five segments in longitudinal direction for a 400 mm reflector.

I

Diamond turning of aluminum
mirror at NiPro Optics (not a
BREAD part but similar)

- Precitech NanoForm 350UPL at LLNL will

be used for the BREAD reflectors
R=20cm (A=0.7m?)
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Superconducting Nanowire (SNSPD) Tests for BREAD

Adiabatic Demagnetization Refrigerator cools to <800 mK

| SNSPDs from MIT & JPL .h
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First Data from a JPL SNSPD

Measured Photon Count Rate of JPL device with lasers (PCR) and dark counts when lasers are turned off (DCR)
Initially very high dark counts--- Light leaks produce 103 counts per second

With additional light shielding at 70 Kelvin, DCR is reduced by 5 orders of magnitude to 102 cps

Expect further progress with attention to light leaks — state of art is 10~ cps
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GigaBread— Microwave Frequency Search

LO
Heterodyne detection with a .
commercially available low-noise
HEMT amplifier

40 - cm reflector (prototype for
optical setup)

10-20 GHz frequency range o s SheaL

FPGA based data acquisition allows 4
GHz instantaneous bandwidth.

Initially at room temperature

Start with dark photon search (no
magnet)

Can be upgrades to search for
axionlike particles by placing in a
magnet.

0 100
Hidden Photon Mass mjy [ueV]
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Coaxial Horn

* Non-standard horn antenna needed to couple free-space dark photon/ axion signal into a 50-Ohm coax cable.

50Q) coax

Copper

\

\J

ZPCTFE Support

i

37
~ 4cm
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FPGA- Based Data Acquisition

Real-Time Averager

Off-the-shelf Xylinx FPGA board averages 4 million P ey [
frequency channels in real time. G — )
Complax overlapping spectra

Can search for a 1- MHz wide signal over 4-GHz o S G
bandwidth with negligible dead time.

Signal appears after A"e;alges

320K averages 100

1 l 316
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GigaBREAD Reflector Parts

Pirsa: 22110049 Page 60/63



GigaBREAD: Pilot Sensitivity — Axions

100 GHz
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Conclusions

* So many opportunities for small experiments!

« Still a lot more ideas and experiment concepts then AXIONS
completed projects.

Plflany more ideas than | have been able to cover
ere.

¢ Searches for axion- electron, axion nucleon interactions.
* Superconducting cavities
* Squeezed state readout of cavities

* “Light shining through walls” and axions from sun
(he |osc0pes§

Searches for dark photons are a related area with similar
technology.

Numerous concepts for counting microwave photons.

We don’t really know how far these methods can be
pushed yet- E.g. background limits to single photon
counting in microwave to terahertz regime. Can we
measure one photon per day?
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