Title: Shapes of non-Gaussianity in warm inflation

Speakers: Mehrdad Mirbabayi

Series: Particle Physics

Date: November 29, 2022 - 1:00 PM

URL: https://pirsa.org/22110045

Abstract: Sphaleron heating has been recently proposed as a mechanism to realize warm inflation when inflaton is an axion coupled to pure Yang-Mills. As a result of heating, there is a friction coefficient ?\propto T^3 in the equation of motion for the inflaton, and a thermal contribution to cosmological fluctuations. Without the knowledge of the inflaton potential, non-Gaussianity is the most promising way of searching for the signatures of this model. Building on an earlier work by Bastero-Gil, Berera, Moss and Ramos, we compute the scalar three-point correlation function and point out some distinct features in the squeezed and folded limits. As a detection strategy, we show that the combination of the equilateral template and one new template has a large overlap with the shape of non-Gaussianity over the range 0.01 <= ?/? <= 1000 and in this range 0.7<|f_NL|<50.

Zoom link: https://pitp.zoom.us/j/95921707772?pwd=NUNhU1QrRm5HaDJNMEYyaTJXQmZnQT09

Pirsa: 22110045 Page 1/42

Shapes of non-Gaussianity in warm inflation

Mehrdad Mirbabayi

ICTP

based on 2205.13227 with Andrei Gruzinov

PI, Nov 29, 2022

Ν

Mehrdad Mirbabayi (ICTP)

Warm Inflation

Pirsa: 22110045 Page 2/42

Review of the standard paradigm

- ▶ Inflation is a theory of initial condition.
- ▶ It erases the pre-existing structures by stretching them to unobservably long λ .
- ▶ It makes the inflationary universe classically cold and empty.
- ▶ It stretches vacuum fluctuations in the UV to be observed cosmological perturbations.

Ν

Mehrdad Mirbabayi (ICTP)

Warm inflation Fang 80', Moss 85', Yokoyama, Maede 86', Berera, Fang 95',...

- ▶ Inflation is a theory of initial condition.
- It erases the pre-existing structures by stretching them to unobservably long λ .
- ► It makes the inflationary universe classically cold and empty. Repeated particle production keeps the universe warm and populated.
- ► It Stretches vacuum fluctuations in the UV into the observed cosmological perturbations.

 The origin of what we see are the subhorizon thermal fluctuations.

Mehrdad Mirbabayi (ICTP)

Warm Inflation

Pirsa: 22110045 Page 4/42

Energy budget

Warm inflation needs a continuous energy transfer

$$\phi \to X$$
 (another sector)

such that

$$rac{
ho_{
m X}}{
ho_{
m tot}} \sim \epsilon$$
 small but approximately fixed.

Assuming thermalization, the temperature can be much greater than H:

$$T\gg H$$
 is compatible with $T^4\ll M_{
m pl}^2H^2$.

Mehrdad Mirbabayi (ICTP)

Background evolution

Particle production back-reacts on the inflaton evolution

$$\ddot{\phi} + (3H + \gamma)\dot{\phi} + V'(\phi) = 0,$$

$$\dot{\rho}_X + 4H\rho_X = \gamma \dot{\phi}^2.$$

This can have a warm slow-roll attractor.

Therefore, not only conceptually different but also the predictions of warm inflation for a given $V(\phi)$ are dramatically different from cold inflation. E.g. the number of e-folds.

Mehrdad Mirbabayi (ICTP)

Origin of perturbations

The transfer of energy $\phi \to X$ is not uniform. It is a random microscopic process.

Ŧ

► This induces large (effectively classical) fluctuations already inside the horizon

$$\delta \phi \gg \delta \phi_{\rm vac}$$
.

- ▶ By the central theorem the observed spectrum is nearly Gaussian if $T \gg H$.
- ▶ But the non-Gaussian features can be distinct from other scenarios. (We are sensitive to $\mathcal{O}(10^{-4})$ deviation from Gaussianity.)

Mehrdad Mirbabayi (ICTP)

Challenge for warm inflation

Yokoyama, Linde '98

As an example, consider a coupling of the form

$$\Delta \mathcal{L} = \frac{\phi}{f} \mathcal{O}, \quad \mathcal{O} \in X, \qquad T \ll f.$$

This typically generates a thermal mass

$$\delta m_{
m th}^2 \sim rac{T^4}{f^2}.$$

The typical friction term is

$$\gamma \sim \frac{T^3}{f^2} \sim \frac{T}{f} \delta m_{
m th} \ll \delta m_{
m th}.$$

Ŧ

Mehrdad Mirbabayi (ICTP)

Minimal warm inflation

Berghaus, Graham, Kaplan '19

Suppose inflaton is an axion coupled to a Yang-Mills plasma at $T > T_c$,

$$\Delta \mathcal{L} = rac{\phi}{f} lpha \mathsf{Tr} (extit{G}_{\mu
u} ilde{G}^{\mu
u}).$$

▶ The corrections to the potential come from instantons,

$$\delta m^2 \sim \frac{T^4}{f^2} e^{-\#/\alpha}.$$

▶ The dissipation term is much important. Sphaleron heating leads to

$$\gamma \sim rac{lpha^5 T^3}{f^2}$$
. I

Grigoriev, Rubakov, Shaposhnikov '89, Arnold, Son, Yaffe '96, Moore, Tassler '10

Mehrdad Mirbabayi (ICTP)

Sphaleron heating in YM

▶ In 4d YM, there exist real-time field configurations that start and end at the vacuum, but they are not deformable to the trivial configuration.

Ŧ

At finite T they happen automatically. They are called Sphaleron transitions. Every time the following charge jumps by ± 1

$$Q(t) = \int_0^t \int_V d^3x \alpha \operatorname{Tr} G \tilde{G}.$$

ightharpoonup Therefore Q(t) performs a random walk at long time-scales

$$\langle Q(t) \rangle = 0, \qquad \lim_{t \to \infty} \lim_{V \to \infty} \frac{\left\langle Q(t)^2 \right\rangle}{Vt} = \Gamma \approx \alpha^5 T^4.$$

Mehrdad Mirbabayi (ICTP)

Warm inflation

When $\dot{\phi} \neq 0$ (but $\alpha \dot{\phi}/f \ll T$ for linear response approx.), the jumps are biased (by FDT Laine, Vuorinen '17)

$$\left\langle lpha \mathrm{Tr} G \, \tilde{G} \right\rangle = rac{\Gamma}{2 f T} \dot{\phi}.$$

This will fix the $\gamma \simeq \alpha^5 \, T^3/f^2$ in the background equations ($w_{YM} \approx 1/3$ at $T \gg T_c$)

$$\ddot{\phi} + (3H + \gamma)\dot{\phi} + V'(\phi) = 0,$$

$$\dot{\rho}_r + 4H\rho_r = \gamma \dot{\phi}^2.$$

which together with $H^2 \approx 8\pi GV/3$ have an *attractor* slow-roll solution if the potential is sufficiently flat. (If $\gamma > H$, then the slow-roll conditions are relaxed.)

Mehrdad Mirbabayi (ICTP)

Sphaleron heating in YM

▶ In 4d YM, there exist real-time field configurations that start and end at the vacuum, but they are not deformable to the trivial configuration.

At finite T they happen automatically. They are called Sphaleron transitions. Every time the following charge jumps by ± 1

$$Q(t) = \int_0^t \int_V d^3x \alpha \operatorname{Tr} G \tilde{G}.$$

ightharpoonup Therefore Q(t) performs a random walk at long time-scales

$$\langle Q(t)
angle = 0, \qquad \lim_{t o\infty}\lim_{V o\infty}rac{\left\langle Q(t)^2
ight
angle}{Vt} = \Gammapprox lpha^5\,T^4.$$
 If

Mehrdad Mirbabayi (ICTP)

Warm inflation

When $\dot{\phi}\neq 0$ (but $\alpha\dot{\phi}/f\ll T$ for linear response approx.), the jumps are biased (by FDT Laine, Vuorinen '17)

$$\left\langle \alpha \operatorname{Tr} G \tilde{G} \right\rangle = \frac{\Gamma}{2fT} \dot{\phi}.$$

This will fix the $\gamma \simeq \alpha^5 \, T^3/f^2$ in the background equations ($w_{YM} \approx 1/3$ at $T \gg T_c$)

$$\ddot{\phi} + (3H + \gamma)\dot{\phi} + V'(\phi) = 0,$$

$$\dot{\rho}_r + 4H\rho_r = \gamma \dot{\phi}^2.$$

which together with $H^2 \approx 8\pi GV/3$ have an *attractor* slow-roll solution if the potential is sufficiently flat. (If $\gamma > H$, then the slow-roll conditions are relaxed.)

Mehrdad Mirbabayi (ICTP)

Minimal warm inflation

Berghaus, Graham, Kaplan '19

Suppose inflaton is an axion coupled to a Yang-Mills plasma at $T > T_c$,

$$\Delta \mathcal{L} = rac{\phi}{f} lpha \mathsf{Tr} (extit{G}_{\mu
u} ilde{G}^{\mu
u}).$$

▶ The corrections to the potential come from instantons,

$$\delta m^2 \sim \frac{T^4}{f^2} e^{-\#/\alpha}.$$

▶ The dissipation term is much important. Sphaleron heating leads to

$$\gamma \sim rac{lpha^5 T^3}{f^2}.$$

Grigoriev, Rubakov, Shaposhnikov '89, Arnold, Son, Yaffe '96, Moore, Tassler '10

Mehrdad Mirbabayi (ICTP)

Sphaleron heating in YM

▶ In 4d YM, there exist real-time field configurations that start and end at the vacuum, but they are not deformable to the trivial configuration.

▶ At finite T they happen automatically. They are called Sphaleron transitions. Every time the following charge jumps by ± 1

$$Q(t) = \int_0^t \int_V d^3x \alpha \operatorname{Tr} G \tilde{G}.$$

ightharpoonup Therefore Q(t) performs a random walk at long time-scales

$$\langle Q(t) \rangle = 0, \qquad \lim_{t \to \infty} \lim_{V \to \infty} \frac{\left\langle Q(t)^2 \right\rangle}{Vt} = \Gamma \approx \alpha^5 T^4.$$

Mehrdad Mirbabayi (ICTP)

Minimal warm inflation

Berghaus, Graham, Kaplan '19

Suppose inflaton is an axion coupled to a Yang-Mills plasma at $T > T_c$,

$$\Delta \mathcal{L} = rac{\phi}{f} lpha \mathsf{Tr} (extit{G}_{\mu
u} ilde{G}^{\mu
u}).$$

▶ The corrections to the potential come from instantons,

$$\delta m^2 \sim \frac{T^4}{f^2} e^{-\#/\alpha}.$$

▶ The dissipation term is much important. Sphaleron heating leads to

$$\gamma \sim rac{lpha^5 T^3}{f^2}.$$

Grigoriev, Rubakov, Shaposhnikov '89, Arnold, Son, Yaffe '96, Moore, Tassler '10

Warm inflation

When $\dot{\phi} \neq 0$ (but $\alpha \dot{\phi}/f \ll T$ for linear response approx.), the jumps are biased (by FDT Laine, Vuorinen '17)

$$\left\langle \alpha \mathsf{Tr} G \tilde{G} \right\rangle = \frac{\mathsf{\Gamma}}{2fT} \dot{\phi}.$$

This will fix the $\gamma \simeq \alpha^5 T^3/f^2$ in the background equations ($w_{YM} \approx 1/3$ at $T \gg T_c$)

$$\ddot{\phi} + (3H + \gamma)\dot{\phi} + V'(\phi) = 0,$$
 $\dot{\rho}_r + 4H\rho_r = \gamma\dot{\phi}^2.$

which together with $H^2 \approx 8\pi GV/3$ have an *attractor* slow-roll solution if the potential is sufficiently flat. (If $\gamma > H$, then the slow-roll conditions are relaxed.)

Mehrdad Mirbabayi (ICTP)

Warm inflation

When $\dot{\phi} \neq 0$ (but $\alpha \dot{\phi}/f \ll T$ for linear response approx.), the jumps are biased (by FDT Laine, Vuorinen '17)

$$\left\langle lpha\mathsf{Tr}G\tilde{G}\right
angle =rac{\mathsf{\Gamma}}{2fT}\dot{\phi}.$$

This will fix the $\gamma \simeq \alpha^5 \, T^3/f^2$ in the background equations ($w_{YM} \approx 1/3$ at $T \gg T_c$)

$$\ddot{\phi} + (3H + \gamma)\dot{\phi} + V'(\phi) = 0,$$

$$\dot{\rho}_r + 4H\rho_r = \gamma \dot{\phi}^2.$$

which together with $H^2 \approx 8\pi GV/3$ have an *attractor* slow-roll solution if the potential is sufficiently flat. (If $\gamma > H$, then the slow-roll conditions are relaxed.)

Mehrdad Mirbabayi (ICTP)

Perturbations

We probe inflation by measuring cosmological perturbations.

▶ At $\lambda \gg 1/T$ degrees of freedom of YM plasma are phonons of a radiation fluid

 $\mathcal{T}^{\mathsf{YM}}_{\mu
u} = rac{4}{3}
ho u_{\mu} u_{
u} + rac{1}{3}
ho \mathsf{g}_{\mu
u},$

where we neglect $\mathcal{O}(\alpha)$ corrections to EoS and $\mathcal{O}(H/T)$ dissipative corrections.

However, there is one dissipative term that is essential

$$-\nabla^2\phi + V'(\phi) = \frac{\alpha}{f} \mathrm{Tr} G \, \tilde{G} = \underbrace{-\gamma(\rho) u^\mu \partial_\mu \phi}_{\langle \rangle \text{on long-} \lambda \text{ bgr}} + \underbrace{\xi}_{\text{noise}}.$$

This couples ϕ to the fluid:

$$abla^{
u}T_{\mu
u}^{YM}=\partial_{\mu}\phi(\gamma u^{\mu}\partial_{\mu}\phi-\xi).$$

Bastero-Gil, Berera, Moss, Ramos '14

Noise correlators

- We need the statistics of ξ to find superhorizon correlators of $\zeta \simeq -\frac{H\delta\phi}{\dot{\phi}}$.
- ▶ The 2pf in the limit of $k, \omega \to 0$ is $\Gamma/f^2 = 2\gamma T$.
- ▶ At low ω, k only sphalerons contribute significantly to the noise correlators. The conventional belief is that sphalerons have a characteristic size $1/(\alpha T)$ and large separation when $\alpha \ll 1$.

Mehrdad Mirbabayi (ICTP)

Warm Inflation

Pirsa: 22110045 Page 20/42

Noise correlators

Then ξ can be approximated as the sum of two Poisson distributed quantities at long wavelengths. "Right-handed" sphalerons with rate Γ_+ and "left-handed" ones with rate Γ_- such that

$$\Gamma_+ - \Gamma_- = rac{\Gamma \dot{\phi}}{2 f T}, \qquad \Gamma_+ + \Gamma_- = \Gamma_{_{
m I}}.$$

The odd correlators are proportional to the parity breaking parameter:

$$\langle \xi(x_1) \cdots \xi(x_N) \rangle pprox rac{\Gamma}{f^N} \left(\prod_{i=2}^N \delta^4(x_i - x_1)
ight) imes \left\{ egin{array}{ll} 1, & extit{N even,} \ rac{u^\mu \partial_\mu \phi}{2fT}, & extit{N odd.} \end{array}
ight.$$

Mehrdad Mirbabayi (ICTP)

Predictivity of EFT

During inflation each k mode stretches from UV (unknown) to IR (known)

In our EFT, we have (using $\zeta \simeq -\frac{H\delta\phi}{\dot{\phi}}$)

 $\left\langle \zeta_{ec{k}}\zeta_{-ec{k}}
ight
angle ^{\prime}=rac{\mathit{H}^{2}}{\dot{\phi}^{2}}\int_{-\infty}^{\infty}dtdt^{\prime}\mathit{G}_{\phi_{ec{k}}}(\infty,t)\mathit{G}_{\phi_{-ec{k}}}(\infty,t^{\prime})\left\langle \xi_{ec{k}}(t)\xi_{-ec{k}}(t^{\prime})
ight
angle .$

This is predictive if the time-integrals are dominated well after $k/a \sim T$.

Mehrdad Mirbabayi (ICTP)

Noise correlators

Then ξ can be approximated as the sum of two Poisson distributed quantities at long wavelengths. "Right-handed" sphalerons with rate Γ_+ and "left-handed" ones with rate Γ_- such that

$$\Gamma_{+} - \Gamma_{-} = \frac{\Gamma \dot{\phi}}{2fT}, \qquad \Gamma_{+} \stackrel{\text{I}}{+} \Gamma_{-} = \Gamma.$$

The odd correlators are proportional to the parity breaking parameter:

$$\langle \xi(x_1) \cdots \xi(x_N) \rangle pprox rac{\Gamma}{f^N} \left(\prod_{i=2}^N \delta^4(x_i - x_1)
ight) imes \left\{ egin{array}{ll} 1, & extit{N even,} \ rac{u^\mu \partial_\mu \phi}{2fT}, & extit{N odd.} \end{array}
ight.$$

Predictivity of EFT

During inflation each k mode stretches from UV (unknown) to IR (known)

In our EFT, we have (using $\zeta \simeq -\frac{H\delta\phi}{\dot{\phi}}$)

$$\left\langle \zeta_{ec{k}}\zeta_{-ec{k}}
ight
angle ^{\prime}=rac{\mathit{H}^{2}}{\dot{\phi}^{2}}\int_{-\infty}^{\infty}dtdt^{\prime}\mathit{G}_{\phi_{ec{k}}}(\infty,t)\mathit{G}_{\phi_{-ec{k}}}(\infty,t^{\prime})\left\langle \xi_{ec{k}}(t)\xi_{-ec{k}}(t^{\prime})
ight
angle .$$

This is predictive if the time-integrals are dominated well after $k/a \sim T$.

Mehrdad Mirbabayi (ICTP)

Power spectrum

Thermal fluctuations \gg vacuum fluctuations

$$k^3 \left\langle \zeta_{\vec{k}}^{\mathrm{I}} \zeta_{-\vec{k}} \right\rangle' = \frac{H^2}{\dot{\phi}^2} 2\gamma T \ F_2(\gamma/H)$$

$$F_2(\gamma/H) = k^3 \int_{-\infty}^{\infty} \frac{dt}{a(t)^3} G(t)^2$$

Mehrdad Mirbabayi (ICTP)

Power spectrum

Thermal fluctuations \gg vacuum fluctuations

$$k^3 \left\langle \zeta_{\vec{k}} \zeta_{-\vec{k}} \right\rangle' = rac{H^2}{\dot{\phi}^2} 2 \gamma T \ F_2(\gamma/H)$$
 $F_2(\gamma/H) = k^3 \int_{-\infty}^{\infty} rac{dt}{a(t)^3} G(t)^2$

Mehrdad Mirbabayi (ICTP)

Perturbations

We probe inflation by measuring cosmological perturbations.

▶ At $\lambda \gg 1/T$ degrees of freedom of YM plasma are phonons of a radiation fluid

 $\mathcal{T}_{\mu
u}^{YM}=rac{4}{3}
ho u_{\mu}u_{
u}+rac{1}{3}
ho g_{\mu
u},$

where we neglect $\mathcal{O}(\alpha)$ corrections to EoS and $\mathcal{O}(H/T)$ dissipative corrections.

However, there is one dissipative term that is essential

$$-\nabla^2\phi + V'(\phi) = \frac{\alpha}{f} \mathrm{Tr} G \, \tilde{G} = \underbrace{-\gamma(\rho) u^\mu \partial_\mu \phi}_{\langle \rangle \text{on long-} \lambda \text{ bgr}} + \underbrace{\xi}_{\text{noise}}.$$

This couples ϕ to the fluid:

$$\nabla^{\nu} T_{\mu\nu}^{YM} = \partial_{\mu} \phi (\gamma u^{\mu} \partial_{\mu} \phi - \xi).$$

Bastero-Gil, Berera, Moss, Ramos '14

Mehrdad Mirbabayi (ICTP)

Warm ϕ^4 inflation (ϕ^2 can't be saved)

 $N_e = 55, \qquad \phi \approx 11.6 M_{\rm pl}, \qquad 1 - n_s \approx 0.0337, \qquad \gamma \approx 5.34 H.$

For SU(2) gauge group

$$\frac{T}{H} \approx 1200, \qquad r \approx 4.7 \times 10^{-7}.$$

Page 28/42 Pirsa: 22110045

Non-Gaussianity

Without the knowledge of $V(\phi)$, NG is the best way to detect/rule-out warm inflation.

▶ NG is usually more visible in the 3pf than higher *n*pfs. It's common to normalize it as

$$f_{NL}(k_1, k_2, k_3) = rac{5 \left\langle \zeta_{ec{k}_1} \zeta_{ec{k}_2} \zeta_{ec{k}_3}
ight
angle'}{6 \sum_{\mathrm{perms}} \left\langle \zeta_{ec{k}_i} \zeta_{-ec{k}_i}
ight
angle' \left\langle \zeta_{ec{k}_i} \zeta_{-ec{k}_i}
ight
angle'}.$$

▶ One source of NG is the Poisson stat. of the noise (B_{sn})

$$f_{NL}\zeta \propto \underbrace{\frac{1}{N^{1/2}}}_{\text{central limit th.}} \times \underbrace{\frac{\dot{\phi}}{fT}}_{\text{parity}} < \frac{H^2}{T^2},$$

where $N \sim T^4/H^4$ is the number of sphalerons contributing to a given perturbation.

Nonlinear evolution

Another source is the hydro nonlinearities

$$-\nabla^2\phi + V'(\phi) = \underbrace{-\gamma(\rho)u^\mu\partial_\mu\phi}_{\text{(\rangleon long-λ bgr}} + \underbrace{\xi}_{\text{noise}},$$

$$abla^{
u}T_{\mu
u}^{YM} \stackrel{\mathrm{I}}{=} \partial_{\mu}\phi(\gamma u^{\mu}\partial_{\mu}\phi - \xi),$$

$$\gamma(\rho) = \bar{\gamma} \left(\rho/\bar{\rho}\right)^{3/4}$$
.

Second order perturbations will cause 3-point NG

$$B_{211} = -rac{H^3}{\dot{\phi}^3} \lim_{t o\infty} \left<\phi^{(2)}_{ec{k}_1}(t)\phi^{(1)}_{ec{k}_2}(t)\phi^{(1)}_{ec{k}_3}(t)
ight> + ext{permrs}.$$

This is fully fixed by a single parameter γ/H ,

Mehrdad Mirbabayi (ICTP)

Non-Gaussianity

Without the knowledge of $V(\phi)$, NG is the best way to detect/rule-out warm inflation.

▶ NG is usually more visible in the 3pf than higher *n*pfs. It's common to normalize it as

$$f_{NL}(k_1, k_2, k_3) = rac{5 \left\langle \zeta_{ec{k}_1} \zeta_{ec{k}_2} \zeta_{ec{k}_3}
ight
angle'}{6 \sum_{\mathrm{perms}} \left\langle \zeta_{ec{k}_i} \zeta_{-ec{k}_i}
ight
angle' \left\langle \zeta_{ec{k}_i} \zeta_{-ec{k}_i}
ight
angle'}.$$

▶ One source of NG is the Poisson stat. of the noise (B_{sn})

$$f_{NL}\zeta \propto \underbrace{\frac{1}{N^{1/2}}}_{\text{central limit th.}} \times \underbrace{\frac{\dot{\phi}}{fT}}_{\text{parity}} < \frac{H^2}{T^2},$$

where $N \sim T^4/H^4$ is the number of sphalerons contributing to a given perturbation.

Nonlinear evolution

Another source is the hydro nonlinearities

$$-\nabla^2\phi + V'(\phi) = \underbrace{-\gamma(\rho)u^\mu\partial_\mu\phi}_{\text{(\rangleon long-λ bgr}} + \underbrace{\xi}_{\text{noise}},$$

$$\nabla^{\nu} T_{\mu\nu}^{YM} = \partial_{\mu} \phi (\gamma u^{\mu} \partial_{\mu} \phi - \xi),$$

$$\gamma(\rho) = \bar{\gamma} \left(\rho/\bar{\rho} \right)^{3/4}.$$

Second order perturbations will cause 3-point NG

$$B_{211} = -rac{{}^{\mathrm{I}}H^3}{\dot{\phi}^3}\lim_{t o\infty}\left<\phi^{(2)}_{ec{k}_1}(t)\phi^{(1)}_{ec{k}_2}(t)\phi^{(1)}_{ec{k}_3}(t)
ight> + ext{permrs}.$$

This is fully fixed by a single parameter γ/H ,

Mehrdad Mirbabayi (ICTP)

Equilateral configuration

NG depends only on the shape of the triangle formed by $\vec{k}_1, \vec{k}_2, \vec{k}_3$.

$$f_{211}(\gamma \ll H) \sim rac{H}{\gamma}, \qquad f_{211}(\gamma \gg H) \sim 1.$$

Mehrdad Mirbabayi (ICTP)

Factorizable templates

- ▶ It is useful to have factorizable templates that have large correlation with the actual shapes.
- ► Define the basis

$$F_{ab} = A^2 k_1^{-a} k_2^{-b} k_3^{-6+a+b} + 5$$
 perms.

where A is the normalization of the power spectrum for the Newtonian potential. Then, the "equilateral template"

$$F^{\text{eq}} = 6F_{32} - 3F_{33} - 2F_{22}$$
.

works well for $\gamma < H$ and the "new-warm template" for $\gamma \geq H$:

$$F^{\text{nw}} = 2F_{43} + F_{42} - F_{44} - F_{33} - F_{41} + 0.08F^{\text{eq}}$$
.

Mehrdad Mirbabayi (ICTP)

Templates

$$C(B_1, B_2) \equiv \frac{B_1 \cdot B_2}{\sqrt{(B_1 \cdot B_1)(B_2 \cdot B_2)}},$$

Mehrdad Mirbabayi (ICTP)

Warm inflation at the verge of discovery!

Mehrdad Mirbabayi (ICTP)

Warm Inflation

Pirsa: 22110045 Page 36/42

Squeezed limit

Since the background is an attractor

$$\lim_{k_1\to 0}f_{211}(k_1,k_2,k_3)=0.$$

But the limit is approached differently than single field inflation (where $f_{NL} \propto k_1^2/k_2^2$)

Mehrdad Mirbabayi (ICTP)

Squeezed limit

In the $\gamma \ll H_{\rm I}$ regime, because of a hydro mode that decays as 1/a at super-horizon scales

$$f_{211}(k_1\ll k_2)\propto\frac{k_1}{k_2}$$

▶ In the $\gamma \gg H$ regime, perturbations are excited at $k/a \sim \sqrt{H\gamma}$ and then grow until horizon-crossing. As a result

$$f_{211} = f_0 + f_2(\hat{k}_1 \cdot \hat{k}_2)^2, \qquad 1 \ll \frac{k_2}{k_1} \ll \sqrt{\gamma/H},$$

with $f_0 \sim f_2 \sim 1$, slowly varying functions of k_1/k_2 .

Mehrdad Mirbabayi (ICTP)

Squeezed limit

▶ In the $\gamma \ll H$ regime, because of a hydro mode that decays as 1/a at super-horizon scales

$$f_{211}(k_1\ll k_2)\propto \frac{k_1}{k_2}$$

▶ In the $\gamma \gg H$ regime, perturbations are excited at $k/a \sim \sqrt{H\gamma}$ and then grow until horizon-crossing. As a result

$$f_{211} = f_0 + f_2(\hat{k}_1 \cdot \hat{k}_2)^2, \qquad 1 \ll \frac{k_2}{k_1} \ll \sqrt{\gamma/H},$$

with $f_0 \sim f_2 \sim 1$, slowly varying functions of k_1/k_2 .

Mehrdad Mirbabayi (ICTP)

Pirsa: 22110045 Page 40/42

Warm Inflation

Pirsa: 22110045

Mehrdad Mirbabayi (ICTP)

Conclusions and outlook

- Warm inflation can be realized using sphaleron heating.
- ▶ It always predicts $f_{NL} \sim 1$ or larger. Hence it is a promising target for NG searches.
- ► There are similarities, but also qualitative differences with other known scenarios with particle production.

Some open questions:

- ► Can thermalization also be realized successfully in those scenarios?
- ▶ How big is the basin of attraction of minimal warm inflation?
- ▶ Reheating into SM.

Thank You!

Mehrdad Mirbabayi (ICTP)

Warm Inflation

Pirsa: 22110045 Page 42/42