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Abstract: Sphaleron heating has been recently proposed as a mechanism to realize warm inflation when inflaton is an axion coupled to pure
Yang-Mills. As aresult of heating, there is afriction coefficient Apropto T3 in the equation of motion for the inflaton, and a thermal contribution
to cosmological fluctuations. Without the knowledge of the inflaton potential, non-Gaussianity is the most promising way of searching for the
signatures of this model. Building on an earlier work by Bastero-Gil, Berera, Moss and Ramos, we compute the scalar three-point correlation
function and point out some distinct features in the squeezed and folded limits. As a detection strategy, we show that the combination of the
equilateral template and one new template has a large overlap with the shape of non-Gaussianity over the range 0.01 & It;= ?/? &It;= 1000 and in this
range 0.7&It;|f_NL|&It;50.

Zoom link: https://pitp.zoom.us/j/959217077722pwd=NUNhU1QrRm5HaDJIJNMEY yaT IXQmZnQT09
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Review of the standard paradigm

Inflation is a theory of initial condition.

It erases the pre-existing structures by stretching them to
unobservably long A.

It makes the inflationary universe classically cold and empty.

It stretches vacuum fluctuations in the UV to be observed
cosmological perturbations.
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inflation Fang 80, Moss 85', Yokoyama, Maede 86', Berera,Fang 95',. ..

Inflation is a theory of initial condition.

It erases the pre-existing structures by stretching them to
unobservably long A.

s akes_the inflat : lassicallv-cold-and |

Repeated particle production keeps the universe warm and
populated.

s Stretel ‘o s i the U\ inte the ol I
loical bations.

The origin of what we see are the subhorizon thermal fluctuations.
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Energy budget

Warm inflation needs a continuous energy transfer
¢ — X (another sector)

such that
PX e small but approximately fixed.

Prot

Assuming thermalization, the temperature can be much greater than H:

T>H is compatible with T < M§1H2.
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Background evolution

Particle production back-reacts on the inflaton evolution

¢+ (3BH+7)p+ V() =0,

px + 4Hpx = v¢°.

This can have a warm slow-roll attractor.

Therefore, not only conceptually different but also the predictions of
warm inflation for a given V/(¢) are dramatically different from cold
inflation. E.g. thé number of e-folds.
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Origin of perturbations

The transfer of energy ¢ — X is
not uniform. It is a random
MIiCroSCopiC Process.

» This induces large (effectively classical) fluctuations already inside
the horizon

5¢ > 5‘§bvac .

» By the central theorem the observed spectrum is nearly Gaussian if
T>H.

» But the non-Gaussian features can be distinct from other scenarios.
(We are sensitive to O(10~*) deviation from Gaussianity.)
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Challenge for warm inflation Yokoyama,Linde 98

As an example, consider a coupling of the form

AE:?O, O e X, T=<if.

This typically generates a thermal mass

T4
2

5mth ~4 ?.
The typical friction term is

T3
/}/ ~ ? ~ ?6mth << 6mth°
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Minimal warm inflation Berghaus, Graham,Kaplan '19

Suppose inflaton is an axion coupled to a Yang-Mills plasma at 7 > T,

AL = %aTr(GWGW).

» The corrections to the potential come from instantons,

4
2 T #/cx'

~ —e_

om 2

» The dissipation term is much important. Sphaleron heating leads to

(15 T3

VNfZI

Grigoriev,Rubakov,Shaposhnikov '89, Arnold,Son,Yaffe '96, Moore, Tassler
720
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Sphaleron heating in YM

» In 4d YM, there exist
real-time field configurations
that start and end at the
vacuum, but they are not
deformable to the trivial
configuration.

» At finite T they happen automatically. They are called Sphaleron
transitions. Every time the following charge jumps by =1

Q(t)zf /d3xaTrG(3.
o Jv

» Therefore Q(t) performs a random walk at long time-scales

(Q(t)) =0, lim lim M =T ~o°T

t—oo Voo Vit
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Warm inflation

When qS # 0 (but aqz-‘)/f & T for linear response approx.), the jumps are
biased (by FDT Laine,Vuorinen '17)

<aTrG@> _ !

=, ﬁ .

This will fix the v ~ o® T3/f? in the background equations (wyy ~ 1/3
at T > T,)

¢+ (BH+7)d+ V'(¢) =0,
pr+4Hp, = 'WBZ-
which together with H2 ~ 8w GV /3 have an attractor slow-roll solution if

the potential is sufficiently flat. (If v > H, then the slow-roll conditions
are relaxed.)
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Minimal warm inflation Berghaus, Graham,Kaplan '19

Suppose inflaton is an axion coupled to a Yang-Mills plasma at 7 > T,

AL = ?aTr(GW(?“”).

» The corrections to the potential come from instantons,

4
2 T #/cx'

~ —e_

om 2

» The dissipation term is much important. Sphaleron heating leads to

(15 T3
v f2

Grigoriev,Rubakov,Shaposhnikov '89, Arnold,Son,Yaffe '96, Moore, Tassler
720

Mehrdad Mirbabayi (ICTP) Warm Inflation

Page 16/42



Warm inflation

When qS # 0 (but aqz-‘)/f & T for linear response approx.), the jumps are
biased (by FDT Laine,Vuorinen '17)

<aTrG@> _ !

=, ﬁ .

This will fix the v ~ o® T3/f? in the background equations (wyy ~ 1/3
at T > T,)

¢+ (BH+7)d+ V'(¢) =0,
br+4Hpr:'Y¢.52- I
which together with H2 ~ 8w GV /3 have an attractor slow-roll solution if

the potential is sufficiently flat. (If v > H, then the slow-roll conditions
are relaxed.)
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Perturbations

We probe inflation by measuring cosmological perturbations.

» At A > 1/T degrees of freedom of YM plasma are phonons of a

radiation fluid

4 1
TLM = gPUuUV = Epgpwa

where we neglect O(a) corrections to EoS and O(H/ T) dissipative
corrections.

» However, there is one dissipative term that is essential

o

GG = —y(p)uhdp+ ¢ .
O el ol 4 A W I

{}on long-\ bgr noise

This couples ¢ to the fluid:
VI TIM = 0,07 Oy — £).

Bastero-Gil, Berera, Moss, Ramos '14
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Noise correlators

» We need the statistics of £ to find superhorizon correlators of
Hé

» The 2pf in the limit of k,w — 0is [/f2 = 2T .

» At low w, k only sphalerons contribute significantly to the noise
correlators. The conventional belief is that sphalerons have a
characteristic size 1/(aT) and large separation when o < 1.
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Noise correlators

Then £ can be approximated as the sum of two Poisson distributed
quantities at long wavelengths. “Right-handed” sphalerons with rate I
and “left-handed” ones with rate I _ such that

& r++r_:r

L. —I_=
i 2fT’ )

The odd correlators are proportional to the parity breaking parameter:

N even,

(E(xa) - -&(xn)) = fLN (H 5 (x — Xl)) X

N odd.
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Predictivity of EFT

During inflation each k mode stretches from UV (unknown) to IR
(known)

In our EFT, we have (using ¢ ~ —H%qb)
I

(g-(.g_;y = Z—j / O; dtdt’ G,_(00, £) G, (oo, t') <§E(t)£_,—(-(t’)>.

This is predictive if the time-integrals are dominated well after k/a ~ T.
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Power spectrum
Thermal fluctuations > vacuum fluctuations

’ H?
R (G g) = 52T Falo/H)

o/ =k [ T Gy

o (1)

o Fa(y/H)

1072 Tt 1< 10t 104

v/IH
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Power spectrum
Thermal fluctuations > vacuum fluctuations

’ H?
k{Gz) = 70T Faly/H)
I

o/ =k [ e 3

o (1)

G(t)?

o Fa(y/H)

1072 Tt 1< 10t 104

v/IH
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Perturbations

We probe inflation by measuring cosmological perturbations.

» At A > 1/T degrees of freedom of YM plasma are phonons of a

radiation fluid

4 1
TLM = gPUuUV = Epgpwa

where we neglect O(a) corrections to EoS and O(H/ T) dissipative
corrections.

» However, there is one dissipative term that is essential

(0

—V2p+ V'(¢) = ZTrGG = —1(p)u B8+ € .
e S e

{}on long-\ bgr noise

This couples ¢ to the fluid: :

VI T = 8,01 Byt — £).

Bastero-Gil, Berera, Moss, Ramos '14
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Warm ¢* inflation (¢? can’t be saved)

Ne =55 ¢~11.6M,,  1— n,~ 00337,
For SU(2) gauge group
-

— ~ 47 %1077,
m r

Planck TT,TE,EE+lowE
Planck TT,TE,EE+lowE+lensing
+BK14+BAO

0.97
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Non-Gaussianity

Without the knowledge of V/(¢), NG is the best way to detect/rule-out
warm inflation.

» NG is usually more visible in the 3pf than higher npfs. It's common
to normalize it as

5<Ca<@4g>’ |
62 perms <Cﬂg,.C_;:,.>Jr <C;,.C_,;,>I

fu(ki, k2, k3) =

» One source of NG is the Poisson stat. of the noise (Bs;)

1 b H?

fNLC X W X ﬁ < ﬁ,
—— ——
central limit th.  parity

where N ~ T*/H* is the number of sphalerons contributing to a
given perturbation.
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Nonlinear evolution

Another source is the hydro nonlinearities

—V2¢+ V'(¢) =—(p)u" 0.0+ £
~ AN

{Yon long-A bgr noise

I

VYT =0,¢(vu*0u¢ — £),

v(p) =7 (p/0)**.

Second order perturbations will cause 3-point NG

Bm:—%thm (#2(0)6D(0)6D (1)) + permrs.

This is fully fixed by a single parameter v/H,
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Non-Gaussianity

Without the knowledge of V/(¢), NG is the best way to detect/rule-out
warm inflation.

» NG is usually more visible in the 3pf than higher npfs. It's common
to normalize it as

5 <C;1C;2C;;‘3>’ _
6 % porms {Gi_it) (Selot)

fu(ki, k2, k3) =

» One source of NG is the Poisson stat. of the noise (Bs;)

1 b H?
p PO =t
Ni/2 T -T2
—— ——
central limit th.  parity

fueg o
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Nonlinear evolution

Another source is the hydro nonlinearities

—V2¢+ V'(¢) =—(p)u" 0.0+ £
~ AN

{Yon long-A bgr noise

VYT =0,¢(yu* 0. — £),

v(p) =7 (p/0)**.

Second order perturbations will cause 3-point NG

I

Bon = — % lim (6P(0)6Q(0)60(1)) + permrs

& =
This is fully fixed by a single parameter v/H,
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Equilateral configuration

NG depends only on the shape of the triangle formed by El, EQ, I?3.

H
f'211(’}£ < H) ~ o f11(y > H) ~ 1.

— fulk, k, k)
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Factorizable templates

» It is useful to have factorizable templates that have large correlation
with the actual shapes.

» Define the basis
Fap = A%k 2 ky Pky 8722 15 perms.

where A is the normalization of the power spectrum for the
Newtonian potential. Then, the “equilateral template”

FY = 6F3; — 3F33 — 2Fp;.
works well for v < H and the “new-warm template” for v > H:

an - 2F43 + F42 — F44 — F33 - F41 = 0.08Feq.
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correlation

---- (C(211,eq)
— (C(211, nw)

102

B, B
V(B1-B1)(B2- B)’
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Warm inflation at the verge of discovery!
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Squeezed limit

Since the background is an attractor

lim f211(k1, k2, k3) = 0.
k1—>0

But the limit is approached differently than single field inflation (where
fNL X kf/kzz)
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Squeezed limit

> In the v < H, regime, because of a hydro mode that decays as 1/a
at super-horizon scales

ki

fr11( ki < ko) .
2

» In the v > H regime, perturbations are excited at k/a ~ +/H~ and
then grow until horizon-crossing. As a result

ko

i1 = fo + Kk - k)?, 1< .

< V/H,

with fy ~ £, ~ 1, slowly varying functions of k; /k;.
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Shot-noise
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Conclusions and outlook

» Warm inflation can be realized using sphaleron heating.

» It always predicts fp; ~ 1 or larger. Hence it is a promising target
for NG searches.

» There are similarities, but also qualitative differences with other
known scenarios with particle production.

Some open questions:
» Can thermalization also be realized successfully in those scenarios?

» How big is the basin of attraction of minimal warm inflation?

» Reheating into SM.

Thank You!
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