Title: Locality bounds on quantum dynamics with measurements
Speakers:

Series. Quantum Matter

Date: November 08, 2022 - 3:30 PM

URL.: https://pirsa.org/22110032

Abstract: In non-relativistic systems, the Lieb-Robinson Theorem imposes an emergent speed limit (independent of the relativistic limit set by c),
establishing locality under unitary quantum dynamics and constraining the time needed to perform useful quantum tasks. We have extended the
Lieb-Robinson Theorem to quantum dynamics with measurements. In contrast to the general expectation that measurements can arbitrarily violate
gpatial locality, we find at most an (M+1)-fold enhancement to the speed of quantum information, provided the outcomes of M local measurements
are known; this holds even when classical communication is instantaneous. Our bound is asymptotically optimal, and saturated by existing
measurement-based protocols (the "quantum repeater”). Our bound tightly constrain the resource requirements for quantum computation, error
correction, teleportation, generating entangled resource states (Bell, GHZ, W, and spin-squeezed states), and preparing SPT states from short-range
entangled states.

Zoom Link: https://pitp.zoom.us/j/95640053536?pwd=Z050WIFRSEFTZWFRK 2dwcHdsWIBBdz09
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In special relativity, spacelike separated points can’t
communicate!

no interactions

interactions
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In special relativity, spacelike separated points can’t
communicate!

no interactions

interactions

In relativistic quantum field theory:

[Ol(xl,tl), OQ(XQ,t2)] = 0, if (X1 — X2)2 > 62(t1 o t2)2
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Lieb-Robinson Theorem: emergent locality in many-body
quantum systems with spatially local interactions:
[Lieb, Robinson; (1972)]; [Hastings, Koma; math-ph/0507008]

L
vt Ja
< —_— ~ —

JZZip

@ *—9O
4>

Page 7/41



Pirsa: 22110032

Lieb-Robinson Theorem: emergent locality in many-body
quantum systems with spatially local interactions:
[Lieb, Robinson; (1972)]; [Hastings, Koma; math-ph/0507008]
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Why? Defining £ = i[H, ],

Lt 2 Lt L
AO(t):AO+£tA0+(2!) Ag+---+ (L‘)

first terms that survive commutator!

Ao +

>4

we must have a sequence of
A=[Hr-11, " ,[Hi2, -, [Hoz, Ao]]] C Ao(?)
to have [A, Br] # 0.
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Lieb-Robinson bounds constrain almost anything useful! For
example, to prepare an entangled state (e.g. Bell pair)

a|OO>OL + [11)or, |01)oz, + |10}
NG vz

out of |¥(a, B)) = («|0) + B|1))o ®[0---0)q...,, wait ¢ > L/v.

|Bell) =

+ 5

® [¥)1,.. L1

This is because

— |¢(Bv _O‘)> — _‘w(_ﬁva»a
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Lieb-Robinson bounds constrain almost anything useful! For
example, to prepare an entangled state (e.g. Bell pair)

a|OO>OL + [11)or, |01)oz, + |10}
NG vz

out of |¥(a, B)) = («|0) + B|1))o ®[0---0)q...,, wait ¢ > L/v.

|Bell) = + 6

® [¥)1,.. L1

This is because

— |¢(Bv _O‘)> — _‘w(_ﬁva»a

Also bounds: correlation functions, finite correlation length in
gapped ground state, classical/quantum simulatability, time to
prepare topological state, etc.
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The past few years have seen huge progress on extending the
Lieb-Robinson theorem:

» dissipative (Lindblad) dynamics

» locality with power-law interactions [Chen, Lucas; 1907.07637];
[Kuwahara, Saito; 1910.14477], [Tran et al; 2103.15828|

(La—2d)

where the light cone is ¢ > r™i®
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The past few years have seen huge progress on extending the
Lieb-Robinson theorem:

» dissipative (Lindblad) dynamics

» locality with power-law interactions [Chen, Lucas; 1907.07637];
[Kuwahara, Saito; 1910.14477], [Tran et al; 2103.15828|

(La—2d)

where the light cone is ¢ > rmin

» Bose-Hubbard model (and related): [Yin, Lucas; 2106.09726]

H="" Jible; + 3 f (vl:)

1,JEL =/

where (in 1d, boson density 7) t = r/n
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@ Adding Measurements
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Going back to the relativistic setting, Einstein, Podolsky, Rosen
(EPR) proposed a thought experiment: Suppose I prepare
a|00>OL +10)or . ,101)or + [10)or

V2 V2

Does wave function collapse break relativity?

Bell) = +2 ® )1, -1

Assuming o = 1,8 = 0, A/B cannot confirm their outcomes
agree until classical communication (at ¢) established.

)
@ oeoo

z=20

»

“] measured 0”
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Going back to the relativistic setting, Einstein, Podolsky, Rosen
(EPR) proposed a thought experiment: Suppose I prepare
a|00>0L + [11)or, [01)oz + [10)or

V2 V2

Does wave function collapse break relativity?

|Bell) =

400 ® [¥)1,...L—1.

Assuming o = 1,8 = 0, A/B cannot confirm their outcomes
agree until classical communication (at ¢) established.

)
@ oeoo

rz=20

»

“T measured 0”

But in a non-relativistic world (¢ = 00), the measurement M
breaks locality!

MXo|Bell) = X7 M|Bell).
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While Lieb-Robinson bounded |Bell) preparation time from
unentangled qubits, measurement ruins locality in |Bell). (Why
it’s a useful resource!)

The main question for today: Can we salvage the
Lieb-Robinson bound for dynamics with measurements?

The answer: Starting with unentangled qubits, if M local
measurement outcomes used to perform error

correction, one qubit can move distance L in time t if
I

(M +1)vt 2 L
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While Lieb-Robinson bounded |Bell) preparation time from
unentangled qubits, measurement ruins locality in |Bell). (Why
it’s a useful resource!)

The main question for today: Can we salvage the
Lieb-Robinson bound for dynamics with measurements?

The answer: Starting with unentangled qubits, if M local
measurement outcomes used to perform error
correction, one qubit can move distance L in time t if

(M +1)vt 2 L

This theorem is optimal, holds for circuits or continuous time
dynamics, incorporates the possibility of “feedback”, and is
saturated by simple protocols.

[Friedman, Yin, Hong, Lucas; 2206.09929)]
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“Quantum repeater” is the optimal protocol that saturates
(M + 1)vt 2 L. Illustrate it with teleportation protocol:

[4(0)) = (]0) + B[1))g © [0 O)1...L.
[%(T)) = [)o..n-1 ® (a]0) + B|1)), -

|¢) depends on measurement outcomes.

measurements \
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“Quantum repeater” is the optimal protocol that saturates
(M + 1)vt 2 L. Illustrate it with teleportation protocol:

[4(0)) = (]0) + B[1))g © [0+ O)1...L.
[ (T)) = [$)o..n—1 ® (a]0) + B|1)), -

|¢) depends on measurement outcomes.

measurements \

@ o0
o0
@

—
[4) [0) [0} 10)4/0)I0) 10)c.[0}n,[0) 0):]0) .10} 10)e.l00,[0) [0)
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To understand Lieb-Robinson bounds, need to use operators Xo,
not states |spsy - -sp).
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To understand Lieb-Robinson bounds, need to use operators Xy,
not states |spsy---sp).

Measurement collapses [¢). X transform independent of [1)?

Avoid question. Look for a unitary realization of
measurement:

N -

[measure Z](«|0) t6|1)) 0)

physical measurement outcome

— a|0)[0) + BI1)[1).

The auxiliary Stinespring qubit recorded whether I got
Z|0) = +10) or Z|1) = —|1) in my measurement outcome.
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The unitary M, which measures 7, is a CNOT gate between
physical /Stinespring qubits. It acts on operators as:

MIXM=XxX, MiYM=YX, MizMm=2 MiZmM=2ZZ

Once a measurement happens, the Stinespring qubit records
outcome — never touch again. Each measurement has its own
Stinespring qubit!

In Schrédinger picture, protocol P acts as P|y).
In Heisenberg picture, P acts as PTOP.

Since a physical process has

(40l (O][PTOP][¢0)[0),

operators with X are “death”. Quantum information is
destroyed. For expectation values to be non-zero, we want to
only see Z. Measurement outcomes are a classical resource.
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Let’s see Stinespring in action. Suppose

_ «(]00) + [11)) + A(|01) + |10))
[4(0)) = 7

asure Z- and error correct to obtain:

® |0).

) = RM[3(0)) = (a]0) + B]1)) © |24S8).
T 4% 1—Z
¥ gt 5

LY. 1’ R :

The final logical operators X; and Z; evolve into:

VI'RTX; RM
MTRTZ;RM
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Let’s see Stinespring in action. Suppose

_ «(]00) + [11)) + A(|01) + [10))
[4(0)) = 7

asure Z» and error correct to obtain:

® |0).

%) = RM[3(0)) = (a]0) + |1)) & 24585).

la 'z 1-—2
3 s 2

— .“;7 R

1

The final logical operators X; and Z; evolve into:

MTRTX;RM = MTX;M = X "
WRTZ,RM =Mz, ZM = 2,2, - Z.

X is logical for both |¢) and [¢(0)).
71 is logical for |¢), but Z1Z5 is logical for |¢(0)).
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No cloning theorem implies useful quantum task must be
done in “one shot”.

To protect a logical bit without QEC, logical operator can have
no X or Z. Thus, trace out Stinespring. Measurement is
Lindblad-like dissipation! (Does nothing “interesting”...)

H

Error correction needed for measurement to be helpful.

In “measurement-induced phase transitions”, one finds
post-selection problem: a task may be achievable, but only if
all measurements have correct outcome. In the thermodynamic
limit, e~%* probability a quantum phase discoverable.

[Friedman, Hart, Nandkishore; 2210.07256]

A practical measurement-assisted phase of matter will be a
quantum error correcting code?
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To understand our theorem, consider Heisenberg dynamics of
logical Paulis. Schematically, logical X is

XL 2 UMRX; R M U
QECnH cas -unitary

~

~UMX; Z;, MU

meas. outcome

~U'Xez; Z; U

s.unitary

~—~—

il unitary

~ X; - Zj(stabilizer for |1(0)))

Crucial points:

» Without QEC, only unitary dynamics can grow operator.

» With QEC and measurement, seed physical operators at
measurement locations, creating non-locality.

» Measurement outcomes must be used to error
correct. If not, anything “quantum” destroyed.

Pirsa: 22110032
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In the quantum repeater example before:

Za Za

1 2

X X X | X
4
t

X Z Z
A Xl ch ZCQ

One measurement /finite depth circuit can disrupt qubit far away:

« EC” i . s
XN L) XNZ1 % XNZIZI

To generate useful quantum resource, push non-commutativity of
(XN, ZnN) to (X1, Z1), requiring “intersecting light cones”!
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To re-cap, we’ve proved that

(M + 1)t > L

if M measurement outcomes/QEC used to transmit one qubit
distance L in time ¢.

It is possible to make M ~ L so t ~ 1. This requires O(L) initial
qubits to be in finely tuned state, so QEC works. Measurement
is not a free resource for preparing quantum states.
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To re-cap, we’ve proved that

(M +1)ot > L

if M measurement outcomes/QEC used to transmit one qubit
distance L in time ¢.

It is possible to make M ~ L so t ~ 1. This requires O(L) initial
qubits to be in finely tuned state, so QEC works. Measurement
is not a free resource for preparing quantum states.

Sometimes, “feed forward” (changing U based on intermediate
M) can be helpful. This does not help to saturate the
Lieb-Robinson bound.
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Can we send () qubits for the price of 17 No!

M’)
1+—|T>L.
1+

M'" = local Pauli measurement outcomes used for QEC.

L3

Need (M + 1) = L/T for each qubit.

If false (for Clifford dynamics), a clever logical X/Z pair, formed
out of products of (X3, Z1,...,Zg), can be transmitted with
M + 1 < L/T measurements. Violates 1-qubit theorem.
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Can we send ) qubits for the price of 17 No!

M’)
1+—|T>L.
1+

M'" = local Pauli measurement outcomes used for QEC.

L3

Need (M + 1) = L/T for each qubit.

If false (for Clifford dynamics), a clever logical X/Z pair, formed
out of products of (X1, Z1,...,Zg), can be transmitted with
M + 1 < L/T measurements. Violates 1-qubit theorem.

We have proved this in general, for M’ < L, except for
non-Clifford dynamics with measurement locations dependent on
prior measurements, and () > 1. A technical challenge only?
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A corollary of our theorem shows that the GHZ state

IGHZ) = a|0---0) + B|1---1)

cannot be prepared from («|0) + 8]1)) ® |0---0) unless
(M + 1)vt 2 L.

Growth

[0) 10) 10) 10) [0) 10) [0y [0) [0) [0) [0) |0) [0) O} |0) [0)

Pirsa: 22110032 Page 33/41



Pirsa: 22110032

A corollary of our theorem shows that the GHZ state
IGHZ) = a[0---0) + 8|1---1)

cannot be prepared from («|0) + 8[1)) ® |0---0) unless
(M + 1)vt 2 L.

Patch L_% {3}

—D

g —D ¢
Growth

[0) 10) 10) 10) [0) 10) [0y [0) [0) [0) [0) |0) [0) O} |0) [0)

Also cannot transform “efficiently” between |GHZ) and |Bell)
using any combination of measurement + unitary dynamics.
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Our theorem also applies for preparing

4+1]01---0)+100---1)
VN ’

but in this case we do not know if (M + 1)vt = L can be
saturated. (We have T' ~ log L and M ~ Llog L.)

W) =afo---0) + g2

©c0 00 e e e @
© 06 00 O e O o
© © 0 0 O 0" e @
® ®© © ® © © ¢ ¢

© 0 00 0 0 O @
© 0 00 Q @ QO @
© 0 00 &6 @ 0 o
© ©0 © 00 © 9 o
© © O 00 O, 0 @
© 0 00 O @ 0O e
® o 060 & 0 0 0o
O e @0 @ 0 0 o
© 0 Oe O e O @
© © 0 00 o e @
© © 0 06:0 © O @
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A spin squeezed state (made out of L spin—% particles on 1d
chain) obeys (WLOG)

5% &5 . {(Jpcosf+ Jysinf)?) &2
(% =105 min T2 =7

We give tight bounds'on preparing spin squeezed states in local
1d chains: if we want

f=1

then we need

(M + 1)vt 2 ?

Saturated (with M = 0) by preparing f independent
max-squeezed regions.

Page 36/41



Pirsa: 22110032

Zo X Zo SPT phases can protect a qubit against extensive
measurement. We’d like to prepare with finite ¢ unitary.

These phases can be used as a resource for teleportation and
MBQC. [Stephen et al; 1611.08053]

(M + 1)vt 2 L, thus ho SPT phase (nor anything else) can be
used to teleport without extensive measurements/decoding.
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We generalized the Lieb-Robinson Theorem to dynamics with
measurement. For unentangled initial states, sending one
qubit requires M local measurement outcomes, where

OF LT > L.

This optimal bound saturated by quantum repeater.

This constrains the preparation of (in 1d):

» GHYZ state
> W state
» any squeezed state

and also implies limits on how easy it might be to decode a qubit
out of an SPT phase.
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We generalized the Lieb-Robinson Theorem to dynamics with
measurement. For unentangled initial states, sending one
qubit requires M local measurement outcomes, where

(M +1)T 2= L.

This optimal bound saturated by quantum repeater.

This constrains the preparation of (in 1d):

» GHZ state
> W state
» any squeezed state

and also implies limits on how easy it might be to decode a qubit
out of an SPT phase.

Open: Can these bounds suggest optimal solutions to quantum
hardware design? When can measurements and feedback
actually help implement gates in a real quantum computer?
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Can we send ) qubits for the price of 17 No!

M’)
1+—|T>L.
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M'" = local Pauli measurement outcomes used for QEC.
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If false (for Clifford dynamics), a clever logical X/Z pair, formed
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We generalized the Lieb-Robinson Theorem to dynamics with
measurement. For unentangled initial states, sending one
qubit requires M local measurement outcomes, where

AR e

This optimal bound saturated by quantum repeater.

This constrains the preparation of (in 1d):

» GHZ state
> W state
» any squeezed state

and also implies limits on how easy it might be to decode a qubit
out of an SPT phase.

Open: Can these bounds suggest optimal solutions to quantum
hardware design? When can measurements and feedback
actually help implement gates in a real quantum computer?
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