Title: : From black holes to the Big Bang: astrophysics and cosmology with gravitational waves and their electromagnetic counterparts

Speakers: Andrea Biscoveanu

Series: Strong Gravity

Date: October 27, 2022 - 1:00 PM

URL: https://pirsa.org/22100145

Abstract: The growing catalog of gravitational-wave signals from compact object mergers has allowed us to study the properties of black holes and neutron stars more precisely than ever before and has opened a new window through which to probe the earliest moments in our universe's history. In this talk, I will demonstrate how current and future gravitational-wave observations can be uniquely leveraged to learn about astrophysics and cosmology. With the current catalog of events detected by the LIGO and Virgo gravitational-wave detectors, I will present evidence for a correlation between the redshift and spin distributions of binary black holes and discuss its astrophysical implications. With joint observations of short gamma-ray bursts and binary neutron star mergers accessible in the next few years, I will describe how to constrain the jet geometry and shed light on the central engine powering these explosions. Finally, with the sensitivities expected for the next generation of gravitational-wave detectors, I will present the statistically optimal method for the simultaneous detection of a foreground of compact binary mergers and a stochastic gravitational-wave background from early-universe processes.

Zoom Link: https://pitp.zoom.us/j/95280675686?pwd=RThMeStWeWl1VlBuV1cvYW8zTXgydz09

Pirsa: 22100145 Page 1/38

Pirsa: 22100145 Page 2/38

The gravitational-wave data obtained by the LIGO-Virgo-Kagra collaboration since 2015 has taught us that:

- 1. Compact object binaries that merge within a Hubble time exist in the Universe
- 2. Neutron stars and black holes in binaries have masses spanning the range $\sim 1-100~M_{\odot}$
- 3. The spins (angular momenta) of the component compact objects in these binaries are small
- 4. Binary neutron star mergers are the progenitors of some short gamma-ray bursts and the astrophysical sites of most heavy-element nucleosynthesis
- 5. The fraction of the total energy density of the universe contributed by gravitational waves is $\Omega_{\rm GW} \leq 5.8 \times 10^{-9}$

The gravitational-wave data obtained by the LIGO-Virgo-Kagra collaboration since 2015 has taught us that:

- 1. Compact object binaries that merge within a Hubble time exist in the Universe
- 2. Neutron stars and black holes in binaries have **masses** spanning the range $\sim 1-100~M_{\odot}$
- 3. The spins (angular momenta) of the component compact objects in these binaries are small
- 4. Binary neutron star mergers are the progenitors of some short gamma-ray bursts and the astrophysical sites of most heavy-element nucleosynthesis
- 5. The fraction of the total energy density of the universe contributed by gravitational waves is $\Omega_{\rm GW} \leq 5.8 \times 10^{-9}$

a / **a a a**

Pirsa: 22100145 Page 4/38

The gravitational-wave data obtained by the LIGO-Virgo-Kagra collaboration since 2015 has taught us that:

- 1. Compact object binaries that merge within a Hubble time exist in the Universe
- 2. Neutron stars and black holes in binaries have masses spanning the range $\sim 1-100\,M_{\odot}$
- 3. The **spins** (angular momenta) of the component compact objects in these binaries are small
- 4. Binary neutron star mergers are the progenitors of some short gamma-ray bursts and the astrophysical sites of most heavy-element nucleosynthesis
- 5. The fraction of the total energy density of the universe contributed by gravitational waves is $\Omega_{\rm GW} \leq 5.8 \times 10^{-9}$

Neutron star-black hole spin magnitude

@ / E D D

Pirsa: 22100145 Page 5/38

The gravitational-wave data obtained by the LIGO-Virgo-Kagra collaboration since 2015 has taught us that:

- 1. Compact object binaries that merge within a Hubble time exist in the Universe
- 2. Neutron stars and black holes in binaries have masses spanning the range $\sim 1-100\,M_{\odot}$
- 3. The spins (angular momenta) of the component compact objects in these binaries are small
- 4. Binary neutron star mergers are the progenitors of some short gamma-ray bursts and the astrophysical sites of most heavy-element nucleosynthesis
- 5. The fraction of the total energy density of the universe contributed by gravitational waves is $\Omega_{\rm GW} \leq 5.8 \times 10^{-9}$

Pirsa: 22100145 Page 6/38

The gravitational-wave data obtained by the LIGO-Virgo-Kagra collaboration since 2015 has taught us that:

- 1. Compact object binaries that merge within a Hubble time exist in the Universe
- 2. Neutron stars and black holes in binaries have masses spanning the range $\sim 1-100\,M_{\odot}$
- 3. The spins (angular momenta) of the component compact objects in these binaries are small
- 4. Binary neutron star mergers are the progenitors of some short gamma-ray bursts and the astrophysical sites of most heavy-element nucleosynthesis
- 5. The fraction of the **total energy density** of the universe contributed by gravitational waves is $\Omega_{\rm GW} \leq 5.8 \times 10^{-9}$

6

Pirsa: 22100145 Page 7/38

Outline – why we care

Learn about binary black hole formation channels

- Correlation between the redshift and effective spin for systems observed by the LIGO and Virgo gravitational-wave (GW) detectors
- Learn about the central engine powering short gamma-ray burst (sGRB) jets
 - Multimessenger method to constrain the jet geometry using a population of coincident sGRB and GW observations obtained in the next few years
- Learn about early-universe processes like preheating and phase transitions
 - Statistically optimal method for the simultaneous detection of a foreground of compact object mergers and a cosmological stochastic gravitational-wave background

G / E O O

1

Pirsa: 22100145 Page 8/38

Formation of black hole binaries

http://www-astro.physics.ox.ac.uk/~podsi/grav_waves.pdf

- Gravitational-wave observations of binary black holes can tell us how these systems form and evolve
- Two main formation channels:
 - Field formation
 - Preferentially aligned spins
 - Low spin magnitude for first-born BH
 - Second-born BH can be spun up
 - Upper and lower mass gaps
 - Preference for equal mass ratios

Pirsa: 22100145 Page 9/38

Formation of black hole binaries

http://www-astro.physics.ox.ac.uk/~podsi/grav_waves.pdf

- Gravitational-wave observations of binary black holes can tell us how these systems form and evolve
- Two main formation channels:
 - Dynamical formation
 - Isotropic spin tilt distribution
 - Low spin magnitudes except for hierarchical mergers
 - Can populate mass gaps
 - Sub-population with unequal mass ratios

9

Pirsa: 22100145 Page 10/38

Binary black hole parameters

- Quasicircular binary black hole systems detected by LIGO in gravitational-waves are characterized by 15 parameters
 - Intrinsic masses and spins
 - Extrinsic distance (redshift), inclination, sky position, etc.

10

Pirsa: 22100145 Page 11/38

Binary black hole parameters

- Quasicircular binary black hole systems detected by LIGO in gravitational-waves are characterized by 15 parameters
 - Intrinsic masses and spins
 - Extrinsic distance (redshift), inclination, sky position, etc.
- χ_{eff} best measured spin parameter with gravitational waves, mass-weighted spin aligned with the orbital angular momentum

G / E O D

Population analysis

- Determine the distribution of effective spin across a population of detections instead of looking just at individual events
- BBHs detected during LIGO-Virgo's third observing run with false alarm rate < 1/yr, 69 BBH
- Account for detector selection effects to measure the properties of the astrophysical rather than the observed population
- Model $\chi_{\rm eff}$ as a Gaussian distribution with unknown mean and width (based on Roulet et al., arxiv:1806.10610, Miller et al., arxiv:2001.06051)

G / E O D

Correlations with effective spin

- Callister et al. arXiv:2106.00521 find an anti-correlation between the mean of the $\chi_{\rm eff}$ distribution and the mass ratio
- Extend this model to look for correlations between spin and primary mass and spin and redshift (or both!)

$$\pi_{\text{pop}}(\chi_{\text{eff}}|\Lambda_{\chi_{\text{eff}}}, m_1, z) = \mathcal{N}(\chi_{\text{eff}}; \mu_{\chi}, \sigma_{\chi}),$$

$$\mu_{\chi}(z, m_1) = \mu_0 + \delta \mu_z(z - 0.5) + \delta \mu_{m_1} \left(\frac{m_1}{10 \text{ M}_{\odot}} - 1\right)$$

$$\log \sigma_{\chi}(z, m_1) = \log \sigma_0 + \delta \log \sigma_z(z - 0.5) + \delta \log \sigma_{m_1} \left(\frac{m_1}{10 \text{ M}_{\odot}} - 1\right)$$

S.B., Callister, Haster, Ng, Vitale, Farr, arxiv:2204.01578

Correlations with effective spin

• $\chi_{\rm eff}$ distribution broadens with redshift at 98.6% credibility when allowing only for redshift correlations

@ / E O D

Correlations with effective spin

- $\chi_{\rm eff}$ distribution broadens with primary mass at 93.5% credibility when allowing only for primary mass correlations
- When allowing for correlations with both parameters, no correlation with either is disfavored at 96.2% credibility

Verifying the correlation

0.00

 $\chi_{
m eff}$

0.50

0.75

-0.75

-0.50

- Unlikely to be a spurious correlation due to individual spin, redshift measurements
- Mass-spin correlation easier to unambiguously distinguish in simulations

Pirsa: 22100145 Page 17/38

Astrophysical implications of correlation

- Mixtures between populations formed via different channels would more easily explain a correlation between the mean of the effective spin distribution and the redshift
 - Ex: Binaries formed in the field with preferentially positive spins dominating at higher redshifts
- Broadening of the distribution might be explained in terms of change in natal spin distribution with redshift
 - Tidal spin-up correlated with delay time, redshift
 - Relationship between metallicity, efficiency of angular momentum transport, and stellar mass
- \geq 2.45 σ significance of correlation is comparable to other putative correlations (i.e., mass ratio and effective spin)

Short gamma-ray bursts

- GRBs are the most energetic EM explosions observed in the universe, but their launch mechanism remains unknown.
- Understanding the geometry of the GRB jet can shed light on the central engine driving the emission
- Traditional calculation of jet opening angle relies on observing a steepening in the afterglow light curve across all wavelengths

Piran DOI: 10.1126/science.1068157

Emission profile models

- Coincident GW and EM observations of a GRB provide an independent measurement of the inclination angle and distance.
- Devise a Bayesian method using coincident observations to constrain the opening angle, emission profile, and other properties without a jet break observation.

LVC, Fermi, INTEGRAL arxiv:1710.05834

6 © **5** (**6**

Isotropic equivalent energy

• Measure fluence (energy/area) but want to model isotropic equivalent energy:

$$F^{\gamma} = \frac{E^{\rm iso}(1+z)}{4\pi d_L^2}$$

• Parameterize E^{iso} in terms of total energy, opening angle, Lorentz factor, and power-law index $(E_{tot}, \theta_j, \Gamma, k)$

Pirsa: 22100145 Page 21/38

<u>%</u> <u>& (</u> <u>(</u> <u>B</u> <u>Y</u>

Page 22/38

Individual-event analysis

Measuring GRB population parameters

- Not all GRBs will have the same opening angle, Lorentz factor, and energy budget.
- Measure the distributions from which these parameters are drawn for a population of coincident GW-GRB detections.
- Assume that these parameters are Gaussian-distributed with unknown means and widths.
- Simulate 100 BNS events detectable with gravitational waves, assume a corresponding fluence measurement or upper limit is available for each (no GRB selection effects)

23

Pirsa: 22100145 Page 23/38

Population results – energy

Top-hat jet: $\mu_{\log E} = 50$, $\sigma_{\log E} = 1$

• Total energy easier to measure for top-hat jet population due to bigger effect on normalization of $E^{\rm iso}$

24

• With 100 detections, measure mean and width to ~2 dex at 1σ credibility

Population results – opening angle

Top-hat jet: $\mu_{\theta} = 25$, $\sigma_{\theta} = 5$

• Similar constraints on both parameters for both emission profiles, mean measured to within $\sim 10^{\circ}$ at 1σ credibility

@ / E O D

Population results – structure

Number of events

Structured jet, k=1.9

• Posterior on the power-law index for the structed jet population immediately peaks away from 0 – can distinguish structure

@ / E @ D

Conclusions - GRB jet structure

- Developed a new method for measuring the GRB jet geometry that does not require an observation of the multi-wavelength afterglow
- For a single high-SNR event, we can constrain the log-energy but the other parameters are degenerate
- With a population of 100 coincident events:
 - Measure the mean of the opening angle distribution to within $\sim 10^{\circ}$
 - Find clear evidence in favor of the jet angular profile structure when present
 - Use these constraints to learn about the jet central engine
- We could accumulate 100 GW BNS events with a simultaneous GRB fluence measurement or upper limit with one year of observing at O5 sensitivity

28

Pirsa: 22100145 Page 27/38

Outline

- Learn about binary black hole formation channels
 - Correlation between the redshift and effective spin for systems observed by the LIGO and Virgo gravitational-wave (GW) detectors
- Learn about the central engine powering short gamma-ray burst (sGRB) jets
 - Multimessenger method to constrain the jet geometry using a population of coincident sGRB and GW observations obtained in the next few years
- Learn about early-universe processes like preheating and phase transitions
 - Statistically optimal method for the simultaneous detection of a foreground of compact object mergers and a cosmological stochastic gravitational-wave background

Pirsa: 22100145

The stochastic background

- A random gravitational wave signal produced by many overlapping, individually indistinguishable sources
 - Astrophysical
 - Cosmological
- Persistent and unmodeled, in contrast to GWs from compact binary mergers which are transient and modeled

$$\Omega_{\rm gw}(f) = \frac{1}{\rho_{\rm critical}} \frac{d\rho_{\rm gw}}{d\ln f}$$

$$\Omega_{\rm gw} = \Omega_{\alpha} (f/f_0)^{\alpha}$$

30

Pirsa: 22100145 Page 29/38

Motivation

- The background of unresolvable compact binary coalescences (CBCs) is highly non-Gaussian with estimated amplitude $\Omega_{\rm gw}(f=25~{\rm Hz})\approx 10^{-9}$
- Primordial backgrounds from cosmological sources are Gaussian but much weaker, $10^{-17} \lesssim \Omega_{\rm gw}(f) \lesssim 10^{-10}$
- Subtraction of the CBC waveform from the data to reveal the primordial background only works for resolvable signals

31

() E ()

Pirsa: 22100145 Page 30/38

Cross-correlated stochastic search

- Assume the stochastic background is isotropic, unpolarized, stationary, and Gaussian
- The strain in each detector is the sum of a signal and noise component
 - Noise is uncorrelated in spatially separated detectors but same signal is present in both
- Correlate the strain signal from two detectors sufficiently far apart to minimize common noise sources
- Stochastic background manifests itself as excess power in two detectors

$$ilde{s}(f) = ilde{h}(f) + ilde{n}(f)$$
 signal noise $Y \propto \langle ilde{s}_I^*(f) ilde{s}_J(f)
angle$ $\langle Y
angle = \Omega_{gw}$

Allen + Romano, arxiv:gr-qc/9710117

@ / E O D

The optimal search for a non-Gaussian background

- Instead of assuming signal is persistent and unmodeled:
 - Split data into short segments
 - Use deterministic waveform models for merging binaries
 - Calculate the "evidence" for two hypotheses in each segment
 - CBC signal vs noise
- Combine segments to measure the total fraction of segments that contain a merger \rightarrow proxy for the merger rate and Ω_{GW}
- Can reduce the time to detection from the order of years to the order of hours because it models the non-Gaussianity of the signal

33

Smith + Thrane, arxiv:1712.00688

The optimal search for a non-Gaussian background

- Instead of assuming signal is persistent and unmodeled:
 - Split data into short segments
 - Use deterministic waveform models for merging binaries
 - Calculate the "evidence" for two hypotheses in each segment
 - CBC signal vs noise
- Combine segments to measure the total fraction of segments that contain a merger \rightarrow proxy for the merger rate and Ω_{GW}
- Can reduce the time to detection from the order of years to the order of hours because it models the non-Gaussianity of the signal

Smith + Thrane, arxiv:1712.00688

Pirsa: 22100145

Adding a Gaussian background

- Same framework, but in each segment allow for the presence of both compact binary merger and a Gaussian stochastic background
- Avoids contamination of the Gaussian background because both signals are accounted for simultaneously including uncertainties
- Take a weighted sum of the probability distributions inferred for the stochastic parameters inferred under the "signal" and "noise" models independently
 - "Signal" model merger + stochastic background + detector noise
 - "Noise" model stochastic background + detector noise

SB, Talbot, Thrane, Smith, arxiv:2009.04418

34

Pirsa: 22100145 Page 34/38

Demonstration

- Use Hanford-Livingston detector network assuming LIGO design sensitivity
- Simulate 4s segments of data, each with a Gaussian cosmological background signal with $(\log \Omega_{\alpha} = -6, \alpha = 0)$
 - SNR=5.4 for 101 segments
- In 11/101 segments, add a binary black hole signal
 - Signal-to-noise ratios ranging from 2.06-12.17, median 3.54
- Break calculation down into two steps to facilitate combining posteriors on the stochastic background parameters across all segments

() (E) (D) (N)

Results

$$\log \Omega_{\alpha} = -5.96^{+0.08}_{-0.16}$$

$$\alpha = 0.49^{+1.14}_{-0.49}$$

$$\xi = 0.08^{+0.09}_{-0.05}$$

Signal-to-noise Bayes factor for the Gaussian background:

$$\ln \mathrm{BF}_N^S = 11.16$$

Recovery is unbiased with no sensitivity loss!

36

Pirsa: 22100145 Page 36/38

Conclusions – cosmological background

- We have demonstrated the statistically optimal method for the simultaneous detection of a Gaussian background and an astrophysical foreground
- In the absence of the astrophysical foreground, there is no statistical advantage to using the fully Bayesian method over the standard cross-correlation based on the recovered lnBF
- Can extend this method to include the uncertainty in the BBH mass, spin, and redshift distributions and to include the BNS foreground
- Method is also applicable to multiple Gaussian backgrounds with different spectral shapes

37

What's next?

- Conclusions about the binary black hole population are still modeldriven
 - Consider alternative approaches to phenomenological models like "nonparametric" models or direct parameterization in terms of theoretical models
- The BNS observations expected in the next few years carry great multimessenger potential
 - Constrain the neutron star equation of state and kilonova properties like composition and geometry
- Data analysis challenges facing XG detectors will affect the detectability of the cosmological background
 - Work out a fully Bayesian method to deal with issues like overlapping signals, noise model uncertainties, and waveform systematics

38

Pirsa: 22100145 Page 38/38