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Abstract:

One fruitful strategy of tackling quantum gravity is to adapt quantum field theory to the situation where spacetime geometry is dynamical, and to
implement diffeomorphism symmetry in a way that is compatible with regularization and renormalization. It has taken a while to address the
underlying technical and conceptual challenges and to chart a quantum field-theoretic path toward a theory of quantum gravity that is unitary,
essentially unique and can produce "numbers' beyond perturbation theory. In this context, the formulation of Causal Dynamical Triangulations
(CDT) is a quantum-gravitational analogue of what lattice QCD is to nonabelian gauge theory. Its nonperturbative toolbox builds on the
mathematical principles of "random geometry” and allows us to shift emphasis from formal considerations to extracting quantitative results on the
spectra of invariant quantum observables at or near the Planck scale. A breakthrough result of CDT quantum gravity in four dimensions is the
emergence, from first principles, of a nonperturbative vacuum state with properties of a de Sitter universe. | will summarize these findings, highlight
the nonlocal character of observables in quantum gravity and describe the interesting physics questions that are being tackled using the new notion
of quantum Ricci curvature.
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My perspective on quantum gravity

X

Aim: construct a fundamental theory of quantum gravity as a non-
perturbative, diffeomorphism-invariant quantum field theory of
dynamical geometry and study its properties in a Planckian regime.

This presents major technical, physical and conceptual challenges:
dealing with QFT infinities and the absence of a fixed background
spacetime, devising appropriate numerical and renormalization
methods, (re-)deriving the classical limit and phenomenology.

This is possible. Major advances towards this goal have been made
in the research program of Causal Dynamical Triangulations (CDT).
It sets a concrete frame of reference - beyond “formal” matters - for
what we may reasonably expect to be able to achieve in our quest
to relate Planckian quantum gravity to “real”, observable physics.
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Why should you care?

qua';ltum gravity: nontrivial, unexpected results despite non-exotic
ingredients; functioning computational framework (= our “lab”) to
evaluate quantum observables beyond perturbation theory;
“CDT is to gravity what lattice QCD is to nonabelian gauge theory”

symmetry: diffeomorphism symmetry is very different from local
gauge symmetry; we finally understand how to implement it
consistently in a nonperturbative quantum theory of gravity

“demystification”: quantum (field) theory and general relativity are
perfectly compatible; CDT provides a bottom-up realization of QG:
causal structure is essential, unitarity is realized

cosmology: the most likely phenomenological predictions will involve
early-universe quantum physics, but derived from the full theory
without an a priori symmetry reduction (unlike quantum cosmology)
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What’s the problem with quantum gravity?

L3
e General Relativity = theory of spacetime, not on (a fixed) spacetime
e quantum theory based on perturbative split g (x)= nﬁﬂ”k+ huy (x)

on a fixed Minkowskian background is nonrenormalizable
M. Goroff, A. Sagnotti, NPB 266 (1986) 709

e standard relativistic quantum field theory (QFT) not applicable, no
blueprint beyond perturbation theory (except nonperturbative lattice
QCD, but this has a fixed background, different gauge symmetry)

® no experiments or observations to guide theory-building

e (nonperturbative) QG = 2000: arguing about the “best approach”,
however, no-one knows which observables to compute, and how

e QG = 2000 (post extended-objects era): renaissance of “good old

QFT”/the path integral, we have learned how and what to compute

R.L. et al.: “Quantum Gravity in 30 Questions”, arXiv: 2206.06762
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(Causal) Dynamical Triangulations: the basics

gravitational

action
e superposition principle: path integral over Dy ¢ S 1]
metrics on a manifold M, a nonperturbative,
“ . . & Lor(M
Lorentzian “sum over (spacetime) histories” ge Daff((M))

e CDT builds on Euclidean (=Riemannian) “Dynamical Triangulations”:

a weighted sum over all spherical gluings of N equilateral triangles, a
piecewise flat implementation of the formal 2D path integral f/Dg e-Sld!

e 2D random geometry is a hot topic in maths!
a suitable continuum limit N - oo gives rise to

the Brownian sphere . Sheffield, arXiv:2203.02470
4. typical 20 andom surface (© T Buca) elementary 2D triangular building blocks
e there is an inequivalent, exactly soluble Lor-
entzian version, using triangulations with well %5 62 R X b
defined causal structure, 1. Ambjgrn, R.L., NPB 536 (1998)
207, which also gives interesting results in D>2! 3 £
Euclidean/ Minkowskian/

Riemannian (DT) Lorentzian (CDT)
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Putting quantum gravity on a lattice, correctly

Genetal strategy: lattice acts as a regulator, with UV cutoff a; search for
a continuum limit by approaching a second-order phase transition in the
limit @ = 0 while renormalizing bare couplings appropriately; attain
universality (independence of regularization); this is not “discrete QG”

e “reaches where other methods don’t”, subject to numerical limita-
tions; if it exists, continuum theory is essentially unique

e “naive” lattice QG (= 1979): put various first-order formulations of GR
(tetrad e, A + spin connection w,A8) on a fixed hypercubic lattice;
problem: diffeomorphism symmetry badly broken; no interesting results

® “not-so-naive” lattice QG (= 1981): based on “GR without coordinates”

(M, guu(x)) = (T, {£i2, i=1,...,n}), Sgrav[guv] = SReaae(T, {£;2})
T. Regge, Nuovo Cim. A19 (1961) 558

e diffeo-invariance manifest, work directly on G(M),

CDT (#2 = # a?) implementation is labelling-invariant
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(Causal) Dynamical Triangulations: the basics

gravitational
action

e superposition principle: path integral over Dy ¢ S [9]
metrics on a manifold M, a nonperturbative,

« . . . Lor(M
Lorentzian “sum over (spacetime) histories” ge Daff((M))

e CDT builds on Euclidean (=Riemannian) “Dynamical Triangulations”:
a weighted sum over all spherical gluings of N equilateral triangles, a
piecewise flat implementation of the formal 2D path integral f/Dg e-Sld!

e 2D random geometry is a hot topic in maths!
a suitable continuum limit N - oo gives rise to
the Brownian sphere . Sheffield, arXiv:2203.02470

& \ <, typical 2D random surface (© T. Budd) . ol
: elementary 2D triangular building blocks

e there is an inequivalent, exactly soluble Lor-

. 2 . . . 1 P 2
entzian version, using triangulations with well %5 2 X bt
defined causal structure, 1. Ambjgrn, R.L., NPB 536 (1998)
s07, which also gives interesting results in D>2! £ £

Euclidean/ Minkowskian/
Riemannian (DT) Lorentzian (CDT)
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Putting quantum gravity on a lattice, correctly

Genetal strategy: lattice acts as a regulator, with UV cutoff a; search for
a continuum limit by approaching a second-order phase transition in the
limit @ = 0 while renormalizing bare couplings appropriately; attain
universality (independence of regularization); this is not “discrete QG”

e “reaches where other methods don’t”, subject to numerical limita-
tions; if it exists, continuum theory is essentially unique

® “naive” lattice QG (> 1979): put various first-order formulations of GR
(tetrad e A + spin connection w,A8) on a fixed hypercubic lattice;
problem: diffeomorphism symmetry badly broken; no interesting results

® “not-so-naive” lattice QG (= 1981): based on “GR without coordinates”

(M, gu(x)) = (T, {£i3, i=1,...,n}), Sgrav[guv] = SReaae(T, {£;2})
T. Regge, Nuovo Cim. A19 (1961) 558

e diffeo-invariance manifest, work directly on G(M),

CDT (#2 = # a?) implementation is labelling-invariant
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The path integral according to CDT s

version of action

v
L3
= Bl oA 4 = OO ko | iSRT]
Z_nge A 16wGNfd e/ 19l(Rlgl -2y —= 7 “I\;I—Iﬂo E o ©
= i Y
geometries = Lor(M)/Diff(M) cosmolo\gical constant H S‘\/mmEtries of T

e we are not interested in finite triangulations, but a regularization-
independent continuum limit N » oo, for finite physical volume V=N a4

e CDT spacetimes obey discrete “global hyperbolicity”

t+1

e evaluating Zin 4D requires numerical methods,
which require an analytic continuation to real Z
(Wick rotation): in £Z=-a 45, a>0, continue a - -«

H i«
(3.1) H (&)
S Sea \d

t

“time layer” of a CDT configuration in 3D

£:°>0 e no coordinate redundancy:
22<0 edge lengths + gluing data = geometry 7 @E £=11/3
e curvature captured by deficit angle E vA
€ (but sum diverges in cont. limit) . |
building block 2D triangulation with Gaussian curvature
of 4D CDT
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CDT quantum gravity: results

e we have a computational framework — what can we do with it?

e physics of quantum spacetime is captured by expectation values
. 1 .
(0) =~ / Dg Olgle %9l of quantum observables ©

“the point x” is an

e diffeomorphism-invariant observables ARy ICeLCOnEERE
in pure gravity are nonlocal integrals of

scalars like /d%\@R(w) i
M

e “expectation management”: your favourite (semi-)classical question
may not have a Planckian implementation (this is a feature)

e true “guantum signature”: CDT predicts a reduction 4 = 2 of the
(average) spectral dimension of spacetime@#£€p;, 1. Ambjgrn, 1. Jurkiewicz, R.L., PRL
95 (2005) 171301 — UNiversal in quantum gravity? s. carlip, caG 34 (2017) 193001

e to understand 4D quantum geometry, must go beyond “dimensions”
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Key result: emergence of classicality from CDT

On syfficiently large scales, the average shape ( Vs(t)) (spatial volume
as a function of proper time) of the quantum spacetime obtained
dynamically in CDT matches that of a classical de Sitter space.

J. Ambjgrn, A. Gorlich, ). Jurkiewicz, R.L., PRL 100 (2008) 091304, PRD 78 (2008) 063544
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Can we attribute local curvature to a non-smooth metric
space? R<w[g,0g,02g,x) = ? —VYes, there is a renormalized
notion of Ricci curvature applicable in a Planckian regime!

Since global shape is just one mode of
the metric, we cannot conclude that
this quantum universe js a (Euclidean)
de Sitter space $4, with line element

ds® = dt*+c? cos? (t/c)dQé), g=ransl.

Can we say anything about g f
its local geometry? A Ao
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Introducing quantum Ricci curvature

In D dimensions, the key idea is to compare the distance d between
two (D-1)-spheres with the distance 6 between their centres.

The sphere-distance criterion:

“On a metric space with positive
(negative) Ricci curvature, the
distance d of two nearby spheres S,
and S, is smaller (bigger) than the
distance 6 of their centres.”

cf. Y. Ollivier, J. Funct. Anal. 256 (2009) 810 l‘
Our variant uses the average sphere distance of two
spheres of radius 6 whose centres are a distance & apart, Q’

% 1 1
d(S°,8%):= de—l h/ d°~1¢ VK d :
( pr~p ) UOl(Sg) ’UOZ(S,g,) Sg q \/_ 35, q Q(Q:q )a

N. Klitgaard, R.L., PRD 97 (2018) 0460008, N. Klitgaard, R.L., PRD 97 (2018) 106017
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Defining the quantum Ricci curvature (QRC)

From the quotient of sphere distance and centre distance A

we define the “quantum Ricci curvature K, at scale 6”, '
d(52..54.)
%—ch(l—ffq(p,p’)), d=dlpp'], O<e;<3, —

where ¢4 is a non-universal constant depending on the type and the

dimension D of the space. For Riemannian manifolds and 6 «€ 1:
1.5746 + 6% (—0.1440 Ric(v,v) + O(9)), 3 =10

= { 1.6250 + 62 (—0.0612 Ric(v,v) — 0.0122 R + O(8)), D =3,
1.6524 + 62 (—0.0469 Ric(v,v) — 0.0067 R + O(6)), D =4,

Sl &y

e N.B.: this involves only distance and volume measurements

e directional character is captured by the oriented “pair of spheres”;
to extract scalar curvature only, set p=p’ (coinciding “double sphere”)

e the QRC provides a highly nontrivial notion of coarse-grained
curvature at scale 8, for non-infinitesimal distance scales 6
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Quantum Ricci curvature for quantum gravity

Our work on QRC on piecewise flat spaces shows it is computable,
scalable (depends on some physical scale), renormalizable (stays
finite in a continuum limit) and robust (w.r.t. anomalous scaling), and
on “nice” classical spaces reproduces standard results.

simplest QRC observable: summing over all pairs (p,p) with 6=d(p,p’)
yields a 6-dependent, nonlocal curvature profile d,, /5= c.,(1— K., (5))

d _ e new type of observable, characteristic
s hyperbolic space: Kq <0 . . . >
fingerprint” of an entire universe

% flat space: K= 0 e classical constant-curvature spaces
have typical deviations from constancy
sphere: Ko >0 ® can detect anisotropy (ellipsoid vs S2)
o0, . . . . : ~ & G. Clemente, N. Klitgaard, R.L., w.i.p.

1 2 <) 4 5 6

4 < N : : o
5 s e S influence of conical singularities
spaces in 2D (curvature radius 1) J. Brunekreef, R.L., PRD 103 (2021) 026019
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typical 2D Lorentzian “universe”

16F=
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13f =

12
1.1F .
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(d/5) typical 2D Euclidean “universe”

The expectation value (d.,(5)/6)
of the curvature profile of 2D
Lorentzian quantum gravity on a
torus is not flat, but “quantum-
flat”. 1. Brunekreef, R.L., PRD 104 (2021) 126024

Fit
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Finally, measuring quantum Ricci curvature!
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<da/6>in 2D Lorentzian QG on T2, N € [50k,600k]

The expectation value (d.. (5)/5)
of the curvature profile of 2D
Euclidean quantum gravity on
a sphere is best matched by a
5D(!) continuum sphere.

N. Klitgaard, R.L., PRD 97 (2018) 106017
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Quantum curvature of the de Sitter universe?

Mgasuring the curvature profile of the quantum universe in 4D
quantum gravity from CDT on M = S3x 51 at volumes N< 1.2 x 106
show that the quantum Ricci scalar is positive, (K;) > 0, with a good
fit to a Euclidean de Sitter universe 54!

In addition, the quantum Ricci

- N=1200k curvatures in time- and spacelike
o J— directions appear to be the same.
. 4-sphere N. Klitgaard, R.L., Eur. Phys. J. C80 (2020) 990
e This provides additional support

T to the interpretation of the

Y emergent quantum universe in

4
2 4 6 8 10 12 14

terms of a de Sitter space, in the
sense of expectation values.

<da/6> of the dynamically generated dS universe
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Opening doors to the early quantum universe

(relajive) inhomogeneity for 0= Hausdorff dimension measures Of inhomogen3ity and

"1 N No=25K anisotropy for quantum spacetime,

0.0301 H —— N2=38K

ool K, i using observables 0p coarse-grained
A\ —— N2=80K .

0020 N - N2=95K over geodesic balls B(x,6): e.g.

N Ho(8)=\/Fs L oer (05 (@, 6)—0p(6))’
(absolute) inhomogeneity at scale 6
o

0 5 10 15 20 A. Silva, R.L., w.i.p.

0.010 1

0.005

(Ho(6)/0(6)) in 2D Lorentzian QG on T2, N € [9k,95k]
L0, double sphere at x - é=8
[\ §=10 |

2-point curvature correlator s \

\ S
of the coarse-grained ol e - a
} \\
%
N\

guantum Ricci scalar in 2D oah |
Lorentzian quantum gravity: 02 \.\ doub\esph;re aty
no correlations for r > 26 00} \ TR b

J. van der Duin, R.L., w.i.p. —02ly——— T’/ I = = /6

( (Kq(x)-Ko)(Kq(y)-Ks) ) in 2D Lorentzian QG on T2, N=100k
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Summary and outlook

® genuine progress in applying nonperturbative methods to full 4D
guantum gravity: we can compute observables and compare them,

e.g. with results obtained by functional RG methods
A. Bonanno, F. Saueressig et al., Front. in Phys. 8 (2020) 269

® the art is to identify (more) observables that can be measured in
the available scale range and related to macroscopic physics

® CDT provides a rare example of spacetime emergence; the new
quantum Ricci curvature allows us to investigate many interesting
properties of the emergent de Sitter universe across scales

® many other ongoing projects in CDT: extended RG flow analysis,
roles of matter coupling and global topology, CDT-inspired quantum
cosMOoIlogy 1. ambjarn, Y. watabiki, €arly-universe structure formation, ...

CDT reviews: J. Ambjgrn, A. Gorlich, J. Jurkiewicz, R.L., Phys. Rep. 519 (2012) 127,
arXiv: 1203.3591; R.L., Class. Quant. Grav. 37 (2020) 013002, arXiv:1905.08669
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Thank you!

Pl Seminar 27 Oct 2022
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