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Abstract: We analyse models of Matrix Quantum Mechanics in the double scaling limit that contain non-singlet states. The finite temperature
partition function of such systems contains non-trivial winding modes (vortices) and is expressed in terms of a group theoretic sum over
representations. We then focus on the model of Kazakov-Kostov-Kutasov when the first winding mode is dominant. In the limit of large
representations (continuous Y oung diagrams), and depending on the values of the parameters of the model such as the compactification radius and
the string coupling, the dual geometric background corresponds either to that of a long string (winding mode) condensate or a 2d
(non-supersymmetric) semi-classical Black Hole competing with the thermal linear dilaton background. In the matrix model we are free to tune
these parameters and explore various regimes of this phase diagram. Our construction allows us to identify the origin of the microstates of the long
string condensate/2d Black Hole arising from the non trivial representations.
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Plan of the talk

e [ntroduction
o Matrix Quantum Mechanics

o ¢ =1 Liouville theory

o Correspondence between MQM and ¢ = 1 Liouville

e Main Part
o 2D black hole and connection to the WZW model and Sine Liouville

o The corresponding MQM model

o Partition function in the Grand- Canonical ensemble connection with
integrable hierarchies and representations

o Computation of the Free energy for different Saddles
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o Matrix Quantum IMechanics
o ¢ =1 Liouville theory

o Correspondence between MQM and ¢ = 1 Liouville

¢ Main Part
2D black hole and connection to the WZW model and Sine Liouville

The corresponding MQM model

Partition function in the Grand- Canonical ensemble connection with
integrable hierarchies and representations

Computation of the Free energy for different Saddles

Phase Diagram

e Summary and Future Directions
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MQM (gauged) is a 0 + 1 dimensional quantum mechanical theory of
N x N Hermitian matrices M(t) and a non dynamical gauge field A(t).

The Path Integral is:

1
_M2__M3
M|

: ty 1
e~ W = /DMDA exp [—iN/ dt Tr (5 (DtM)2 +
tin

One can diagonalise M by a unitary transformation
M(t) = U(t)A(t)UT(t) where A(t) is diagonal and U (¢) unitary

One then picks up a Jacobian from the path integral measure (Vt)

N
DM =DU [ [ d\A%(A), A(A) = H()\

=1 1<J
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The Hamiltonian is

d d s

AQ A iJYJ1 14 )\i

Y Vgt Doz V)
i<j

Ji; are “momenta” conjugate to SU(IN) rotations

Impose the Gauss-law constraint §S/8A = i[M, M] ~ J = 0 (singlet

sector projection)

Upon rescaling A — g)\ and redefining the wavefunction as
W(A) = A(N)W()), the Schrodinger equation now reads

i~

> + ) U\ =k TEU(N),

A0 s0DEHaD@E-7P0PERE G . ,m mF

Page 5/59



e Consider an initial state where the energy levels are populated up to
some Fermi energy E'r below the top of the barrier, and send 7 — 0,
N — 00, such that Er — 0

e Enough to focus on the quadratic maximum of the potential. We hold
p = —FEp /h fixed in the limit

e The result is quantum mechanics of free fermions in an inverted harmonic
oscillator potential, with states filled up to —u < 0

e At this limit the model is perturbatively stable in 1/N — 0 expansion
V

;
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" Connection with the quantum gravity path integral

The connection with the QG path integral is through this double scaling
limit [Kazakov, Migdal...]. This is not the usual 't Hooft limit

e The double scaling limit produces
smooth surfaces out of the Matrix
fat-graphs while at the same time
keeping all higher genera. It is
defined by A, Er — 0 as we
discussed, while keeping 1 ~ gs_t1
fixed

e The QG theory is the ¢ = 1 Liouville theory. (It can also be interpreted
as a 2D critical string theory in a linear dilaton background with a time
direction ¢ and a space direction ¢)

NOHEEB0NGERAE - PFENER0 OHS . .m mV
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louville theory
[Polyakov, David, Distler, Kawai...], Reviews by: [Ginsparg, Nakayamal
Can one make sense of string theory in case the conformal anomaly is not
canceled?

e Gauge fix only the worldsheet diffeos and keep the conformal mode of the
metric dynamical

e Note that the measure Dg is not invariant under g,, — (") gy

e Exponentiating the conformal anomaly from the measure, the total
action becomes (u = 1,...d, conformal gauge gqop = §abe¢(“))

Scrr = ﬁ /d2a\/§ [Qab((‘?aX“’abXﬂ + 0,00 0) + QR + 47T/J,62bﬂ + ghosts

e This new theory is a "conformal theory" under the simultaneous
transformation gup — €% gp, d(0) — ¢(0) — p(o), iff

DOHEEB0NEPAE - PFRRER0 OHS . .m mV
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Liouville theory and Long strings
e The Liouville action on a worldsheet with boundaries is

B 2 1 o 1 2b¢>)
5—/Rd Z\/§(4wg 0apOs$ + —QRY + pe +/a

K is extrinsic curvature and u, up the bulk-boundary cosmological
constants. For cpatter =1 = b=1,Q =2 and up = /i cosh(no)

K
alsgl/4 (—Q ¢ i uBebqb)
= 2m

Closed strings see the bulk Liouville
wall

Open strings have their endpoints
pinned near the weak coupling region

A very energetic open string can
stretch a lot (large o), before it
scatters back

The ZZ boundary state (D0 brane

BEOHEEE0NEGNAN-TPERRERE OHD . .m ,m¥
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Main Part
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Euclidean 2d black hole

Elitzur-Forge-Rabinovici, Mandal-Sengupta-Wadia

o String theory effective action: S = [ d®ze™?®(R — 4V®? — &)

e 2 — D Cigar solution: ¢® = €% 12 (dr? + tanh® rd6?)

cosh? r

gst = e® is a parameter of the

solution

The weak string coupling region is at
the "boundary of the cigar"

The strong coupling region is at the
tip ‘
It has a fixed temperature

e |t is the near horizon limit of higher dimensional black holes at large D,

Emparan-Grumiller-Tanabe
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! .. eFtip 2 2
e 2 — D Cigar solution: e , ds? ~ (d'r + tanh” rdf )

— cosh?r

gst = e¥ is a parameter of the

solution

The weak string coupling region is at
the "boundary of the cigar"

The strong coupling region is at the
tip
It has a fixed temperature

* It is the near horizon limit of higher dimensional black holes at large D,

Emparan-Grumiller-Tanabe

e Contradiction: From Liouville we find a black hole solution but it does
not exist in the gauged MQM

e This gravity solution is at string scale, so the gravity description cannot
be trusted

AEOYEEE08ENEN-TTETER0 05D . m mF
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Euclidean 2d black hole

Elitzur-Forge-Rabinovici, Mandal-Sengupta-Wadia

o String theory effective action: S = [ d?ze™?®(R — 4V®? — &)

e 2 — D Cigar solution: ¢® = €% 2 (dr? + tanh® rd6?)

cosh? r

gst = e® is a parameter of the

solution

The weak string coupling region is at
the "boundary of the cigar"

The strong coupling region is at the
tip
It has a fixed temperature

e |t is the near horizon limit of higher dimensional black holes at large D,

Emparan-Grumiller-Tanabe
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Wrong to assume that the exact in o black hole solution (SL(2)/U(1))
satisfies the same boundary conditions as the linear dilaton background

The metric and the dilaton of the Black hole solution do obey the same
boundary conditions as the linear dilaton background

The issue emanates from the string winding modes close to the tip of the
cigar

The winding is not conserved = The model has an expectation value for
the winding modes that decreases exponentially as we go closer to the
boundary but not fast enough to be a normalisable deformation of the
original background (when & < 3)

This is a peculiarity of 2 — D (small radius and large dilaton gradient)

The fields scale with glt and close to the boundary g, < 1, so they can
diverge

Thus we deform the linear dilaton background with non-normalisable

EOHEEB0NEDEE-2PERRRE 05D . .m mF
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The metric and the dilaton of the Black hole solution do obey the same
boundary conditions as the linear dilaton background

The issue emanates from the string winding modes close to the tip of the
cigar

The winding is not conserved = The model has an expectation value for
the winding modes that decreases exponentially as we go closer to the
boundary but not fast enough to be a normalisable deformation of the
original background (when k < 3)

This is a peculiarity of 2 — D (small radius and large dilaton gradient)

The fields scale with - and close to the boundary gy < 1, so they can

gst
diverge
Thus we deform the linear dilaton background with non-normalisable
operators, this corresponds to adding sources at infinity for the winding
modes
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1
2k — 2

There are ambiguities in the thermodynamics of both the exact coset
background and the gravity solution

M = 4e2%0 T,

For the coset T, = 2;\/% and different subtraction schemes give very

different results for the various thermodynamic quantities

This is also to be expected due to the fact that the background is a

string scale background

Nevertheless one can safely make some qualitative estimates, = the
entropy is expected to scale as

1

S~M 5 e

gtip

Olga Papadoulaki FZZT branes and non-singets of MQM
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M = 4e72%0 T), =
2 2mvVk — 2

There are ambiguities in the thermodynamics of both the exact coset
background and the gravity solution

For the coset T, = ﬁ and different subtraction schemes give very
different results for the various thermodynamic quantities

This is also to be expected due to the fact that the background is a
string scale background

Nevertheless one can safely make some qualitative estimates, = the
entropy is expected to scale as

SNMN%;\JS_2®O

gtip

Olga Papadoulaki FZZT branes and non-singets of MQM
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FZZ Duality and Black-Hole string transition
e F/ZZ duality: coset CFT is dual to the Sine-Liouville theory,

Fateev-Zamolodchikov?

Sine-Liouville: L = ﬁ ((8:17)2 + (89)? + Q}?qb + £e®® cos R (z, — CL‘R))

Matches with the coset for radius of z to be R = vk and

Ceigar = CSL = 2+ 6Q% Q2=T2, b=vVk— =0

The asymptotic weakly coupled region is ¢ — —o0
The strongly coupled region is for ¢ — oo near the potential wall
The duality is a strong-weak duality

For small radii, the black hole is better described in terms of a

AEOHEEE08ENEN-TTOTAR0 05D . .m mF
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In SL theory we can define the following winding SL-operators

£iR(XE=Xn) o(@-1Q=1/QD6 | T — (HR(XL=Xr)((QHQ-1/QN9

Tir=c¢

These are all operators of dimension (1,1) and hence marginal
The upperscript sign refers to the two possibilities of SL-dressing

The (—) case corresponds to a non-normalisable operator whose
wavefunction grows at weak coupling ¢ — —oo and creates a
local-disturbance on the worldsheet

The (4) case is a normalisable operator that creates a macroscopic loop
on the worldsheet (supported at strong coupling ¢ — +0o0)

AEOHEEE08ENEN-TTETER0 05D . m mF
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D & 7

packground Using conformal perturbation
theory via including in the Lagrantzian the first winding terms

1
b, = 4—66(2_R)¢ cos R (IEL — CUR) ~ _|__R + T—_R

and try to approach the £ — oo, 1 — O region of parameters (SL-point)

This perturbation agrees with the SL term for R = 3/2, when ) = 2, so
one is describing the same system at this point

It makes sense for R < 2, so that the perturbation of the Lagrangian
does not blow up in the asymptotic weakly coupled region and is a
relevant deformation

The KPZ-DDK scaling analysis of the free energy indicates that the two
independent scaling ratios are g,/p and g,/¢%/(2—F)

A0 sS008&Ha0@0-"FAPBRE O . ,m ,
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Our Matrix Model

Similar models by [Minahan, Polychronakos, Gaiotto, Dorey, Tong...]

o Consider the (gauged) MQM action with the N x N Hermitian matrices
M (t) and A(t) (a non dynamical gauge field)

5= /dtTr (% (D:M)? — V(M)) , V(M) ~ —M? double scaling limit

e Describe open strings between N-ZZ and N;-FZZT branes = Extend by
adding Ny x N (anti)- fundamental fields xqi, ¥qi. In 1-d they can be
either fermions or bosons

Ny
Sy = /dtZTr (9] Ditpa — mapltha + ixL,DiXa — MaXXa)

AEOYEEN08EPAN-TPOFARE 05D . m mT
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7
Li[M, My =2 Jij o= —kdi + Z [1? WPai — Xm,Xa:i}

e The Hamiltonian then is

N,N;

82 4+ 1 Jij']ﬂ T
_EW + V(Ai) 5% v —\) 7T Z ma'd) iVai + MaXpiXai

e The fundamentals thus “feed” non-trivial representations

e This model can be written as a spin Calogero model [Polychronakos]
using Uk = (¢ xai), SA =0l TA W, and k=k¥F Ny

Ho=1)" +ZBASA

i7]

k(2N; + k-) /sz + 25454
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N,N;

2 JijJji t
_§W ?,) =t %Z /\ i ;\ = Z mozw wai =l maxaq;Xai

e The fundamentals thus “feed” non-trivial representations

e This model can be written as a spin Calogero model [Polychronakos]
using lI! = (@bm,xm) \IJT TA W5, and k=kT Ny

2Nf:|:k )/2Ny £ 28454 A
Ho=1) = )2 +) BAS;

1#£] iA

with T4, the SU(2Ny) generators and the “magnetic” field
B =3 BATA (specifically B = diag{mq, —mq})

Olga Papadoulaki FZZT branes and non-singets of MQM
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N,N;

2 JijJji t
_§W ?,) =t %Z /\ i ;\ = Z mozw wai =l maxaq;Xai

e The fundamentals thus “feed” non-trivial representations

e This model can be written as a spin Calogero model [Polychronakos]
using lI! = (@bm,xm) \IJT TA - and k=kF Ny

’L

2Nf:|:k )/2Ny £ 28454 A
Ho=1) = )2 +) BAS;

1#£] iA

with T4, the SU(2Ny) generators and the “magnetic” field
B =3 BATA (specifically B = diag{mq, —mq})

Olga Papadoulaki FZZT branes and non-singets of MQM
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Model of [Kazakov, Kostov, Kutasov]

e The canonical partition function can be computed to be
exp {lel —(_12l+1 ng e~ Ama (Tr U 4+ Tr U_l)]

exp (Zz ql TrUTr (U-1)! )

Zy ' ~ / DU det U*
U(N)

Take a double scaling limit (assuming m, = m)

~

Ny — 00, m — 00, with Nfe_ﬁm =t, finite

Limit of "heavy quarks" / strong magnetic field (Calogero picture)

The only surviving winding modes in this case: exp (ETI‘U + fTrUT), are
identical to those studied in the matrix model conjectured to describe the
physics of the Euclidean 2-d black hole (SL(2, R)/U(1) coset)

Advance of our approach = the coullns { are in terms of L|0UV|IIe

A0S s0DEHED@E-7P0PE2E O . ,.m mF
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o Consider the (gauged) MQM action with the N x N Hermitian matrices
M(t) and A(t) (a non dynamical gauge field)

1
S = ]dtTr (5 (D;M)? — V(M)) , V(M) ~ —M? double scaling limit

e Describe open strings between N-ZZ and N¢-FZZT branes = Extend by
adding Ny x N (anti)- fundamental fields xqi, ¥ai. In 1-d they can be
either fermions or bosons

Ny
S = / dt " Tr (ith], Dithe — Mathltba + ix1, D Xa — MaXXa)

* One can also add the Chern-Simons term Scs = k [ dt'TrA = Related
to the addition of k-units of flux in the dual 2D string theory sourced by
the FZZT's

E0HEER0NEPAR-PPERERE OFS . .m m¥
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Limit of 2-d Black hole Matrix Model

Model of [Kazakov, Kostov, Kutasovl]

e The canonical partition function can be computed to be

exp [0,y Y T e (Tevt 4 TeU )]

exp (Zz “"l—lTr UlTr (U—l)l)

Zy ! ~ / DU det U*
U(N)

e Take a double scaling limit (assuming m, = m)

~

Ny — 00, m — 00, with Nfe_Bm =t, finite

e Limit of "heavy quarks" / strong magnetic field (Calogero picture)

e The only surviving winding modes in this case: exp (fTrU + fTrUT), are
identical to those studied in the matrix model conjectured to describe the
physics of the Euclidean 2-d black hole (S L(2, R U(1) coset

A0 s0DE&GP@E-770PE2E O . ,m mF
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Grand-Canonical Ensemble

The matrix model grand canonical free energy is computed from the
canonical one by

Zntom (u, R T) = Z 6ﬁuN(€Zn fn(TrU”+TrUTn)>U’ 5 — R
N=0

The relation between the Liouville couplings ¢,, and the matrix model
couplings #,, is t,, = s—L=

2isinnmtR
This relation is derived upon realising the matrix model grand canonical
partition function as a 7-function of the general Toda hierarchy

Z(tp, T u+ik) = ity t_; p) = (kle?+ ) Ge /- -)|k)

ty,t_ are the Miwa time variables and J. (¢4 ) are the currents
generating the “time” flows

AEOYEEE08EREN-TPOTAR0 05D . m mF
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ln

couplings t,, is tp, = 5= %+

e This relation is derived upon realising the matrix model grand canonical
partition function as a 7-function of the general Toda hierarchy

ZEEp+ik) = (b4, t_; p) = (k|le+H) Ge - | k)

e t,,t_ are the Miwa time variables and J.(t+) are the currents
generating the “time” flows

e The GL(o0) element/operator G = G(u, R) can be expressed as a

bilinear of free fermion operators: G = exp >

1 bmnwmw;
2
e k corresponds to the overall vacuum U(1) “charge” of the 7-function

m,nes+

Olga Papadoulaki FZZT branes and non-singets of MQM 21/43

Partitions and Representations
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Expanding the 7-function in terms of representations

e Under T-duality the 7 function is a generating function for the reflection
amplitudes (Dijkgraaf—Moore—Plesser)
e Then G(u, R) = S(u, R) = Incorporates all the MQM dynamics

e Using the following expansion

R = Yosa(t)INK)
A

(K™D = syt
A

* |A; k) corresponds to a representation/partition A created by acting with
fermions on the vacuum of charge &

d(X)
m 4
A0 sS008&H0@0-7FARBRE O . ,m ,
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We can expand the 7 function as a statistical sum in terms of transition
amplitudes between different representations

The MQM dynamics are diagonal in the representation basis so that

Tr(trtoipm) =Y sa(te)sa(t=) (=) (A k|GIA; k)

A

The summation over A is over all possible Young diagrams that describe
the different partitions/representations

This representation theoretic expansion for the 7 function will allow us to
give a meaning to the microstates comprising the long string
condensate/black hole background

NEO0HEEE0NEPAR-PPERERE 0D . .m m¥
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We can expand the 7 function as a statistical sum in terms of transition
amplitudes between different representations

The MQM dynamics are diagonal in the representation basis so that

Th(t,t—; i) = D sa(tr)sa(t-) (=) (X kG| A k)
A

The summation over A is over all possible Young diagrams that describe
the different partitions/representations

This representation theoretic expansion for the 7 function will allow us to
give a meaning to the microstates comprising the long string
condensate/black hole background
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Take a double scaling limit (assuming mqy = m)

Ny =00, “m — 00, with Nfe_ﬁmzf, finite

Limit of "heavy quarks" / strong magnetic field (Calogero picture)

The only surviving winding modes in this case: exp ({TrU + ¢TrUT), are
identical to those studied in the matrix model conjectured to describe the
physics of the Euclidean 2-d black hole (SL(2, R)/U(1) coset)

Advance of our approach = the couplings t are in terms of Liouville
theory/Matrix model parameters N¢, o = 2m.

Olga Papadoulaki FZZT branes and non-singets of MQM
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e The canonical partition function can be computed to be

( l)l—l-l

exp [Zz o— ng e~ Pma (Tr U+ Tr U_l)]

exp (Zz ETTrU'Tr (U~ ))

Z}va)N/ DU detU*
U(N)

Take a double scaling limit (assuming m, = m)

~

Ny — 00, m—o00, with Nfe_ﬁm =t, finite

Limit of "heavy quarks" / strong magnetic field (Calogero picture)

The only surviving winding modes in this case: exp ((TrU + ¢TrUT), are
identical to those studied in the matrix model conjectured to describe the
physics of the Euclidean 2-d black hole (SL(2, R)/U(1) coset)

Advance of our approach = the couplings ¢ are in terms of Liouville
theory/Matrix model parameters Ny, o = 2m.

00YE=B0NGNEE - "PETRRR0 @SS . ,m mF
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The matrix model grand canonical free energy is computed from the
canonical one by

- n moprtn
ZMQM M,R t Z ﬁﬂN tn(TrU M )>Ua BZZR—R

The relation between the Liouville couplings ¢,, and the matrix model
couplings t,, is t, = —=

2isinnmt R
This relation is derived upon realising the matrix model grand canonical
partition function as a 7-function of the general Toda hierarchy

Z(t, b p+ik) = 1 (tg, t_; p) = (k|le?++) Ge™7- ()| k)

ty,t_ are the Miwa time variables and J.(¢.) are the currents
generating the “time” flows

The GL(00) element/Operator G = G(,u, ) can be expressed as a

AOEs0DE&HP@E-7"7OPERE GOSN -
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R

e This representation theoretic expansion for the 7 function will allow us to
give a meaning to the microstates comprising the long string
condensate/black hole background

Olga Papadoulaki FZZT branes and non-singets of MQM

Measures in the space of representations

Okounkov-Borodin-0lshanski

e The general measure that weights the representations/partitions X\ is the
Schur-measure
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Measures in the space of representations

Okounkov-Borodin-0lshanski

* The general measure that weights the representations/partitions X is the
Schur-measure

1

Ma(t) = Z

salty)salt), | Zo = Z sx(ti)sa(t_) = e2anso PRt
}

e The expected average size of the partition with respect to the Schur
measure is

A0 s0DE&ED@E-7P0PE2E O . ,m mF
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® M, ()) is called the Plancherel measure on partitions of n

_ (dim \)?

M, () i

) |)\|:n

e As the size of the partitions goes to infinity n — oo, the Plancherel
measure exhibits a Cardy-like growth

lim M,(\) ~ exp (2v/n)

n—oo

e and concentrates to a universal limiting Young diagram shape the
Vershik-Kerov-Logan-Shepp limiting shape

2 (yaresin(y/2) + vVA-9?) , [yl <2,
Qy) =
[yl ly| > 2

Olga Papadoulaki FZZT branes and non-singets of MQM
EOHEEE0NENAR-2TERER0 OS2 . .m mF

Pirsa: 22100137 Page 38/59



The Partition function at the continuous limit

e We now take the continuous limit for the complete 7 function that
should also include the reflection amplitude

= (3 +ipuR+p;iR (L —; R+ q:R
G (i, R) = Zsinglet H - Eg gy Dy ) = (2 Jz q; )
j=1

s —ipR—p;R) \| T (3 +iuR — q;R)

e Using the continuum variables

_ %

a(y) =

RAEOHYEE008ENAN-2PERBER0 0D . .m mF
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J:

e Using the continuum variables

_ %

Olga Papadoulaki FZZT branes and non-singets of MQM
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e We then define the resolvent w(q)

w(@)z/ ds N(Q), N(q) —__— w(g + ie) —w(q — ic))

qQ— S 271

e Using these properties of the resolvents and (z) = w(z) + @(—=2)

log (g—j) — Rlog[R(q —ip)] = 24(q) +20(—q) =2(z =¢q), ¢ —cuts,

o2 (g—) ~ Rlog[R(p+im)] = %(p) +2w(—p) = 2=z =p), p—cuts

Olga Papadoulaki FZZT branes and non-singets of MQM
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TR BT g O @ s Fatedd st

We study the Sine-Liouville limit (2 — 0) then only reflection symmetric
Young diagrams N (z) = N (z) contribute

In this limit the relative backreaction of the winding modes on the linear
dilaton background is strong

The cuts of the total resolvent €2(z) = w(z) are symmetrically distributed
with respect to z = 0 and belong strictly on the real axis

OVers.(u) _ log ( Y ) L log (R*u) = 20} (u)

Au e) 2

It has physical cuts for u > 0 and u = 22

The effective potential defined determines essentially all the physical
features of the solutions
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The cuts of the total resolvent 2(z) = w(z) are symmetrically distributed
with respect to z = 0 and belong strictly on the real axis

P o ()~ 3 s (%) — 200

It has physical cuts for © > 0 and u = 22

The effective potential defined determines essentially all the physical
features of the solutions

For R < 2, the effective potential is stable

For R > 2 it is unstable and goes to —oc as u — 0o

Olga Papadoulaki FZZT branes and non-singets of MQM
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single cut no saturation

e |n the left plot we depict the typical effective potential for large
Eeff = ERH/2 (two deep wells)

® In the right one the typical density of boxes that has support on two
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2Q(u) ~ log u+ab—/(u—a?)(u—b?)
2-R (a +b)R™TRETR

The density of boxes is N (z) = = ki G z| € (a, b)

We can fix the edges of the support a, b in terms of the physical
parameters &, R

By demanding vanishing of the leading term in the asymptotic expansion
Q(u)|y— 0o and

By imposing the normalisation condition [, N (z)dz = 3 for N(z)

The result is in terms of Elliptic Functions of the first and the second kind
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(v/(4— 2R))* RRE < €2 < (w/(2 — R))* RRF

This is an O(1) number in the regime 1 < R < 2, this locus is near the
phase transition region

Average size of the partition: (|A\| =n) = %fal(g?Z = —%{f(%gf') thus

4

<|/\| — n> o HR_Z—Ré'z—R and Fuige = _@R—ﬁgg_}g

4

The scaling of £ in the free energy (and the property that is vanishes for
R = 2) coincides with that of Kazakov-Kostov-Kutasov when the cut
becomes large (near the phase transition region between the single cut
and the saturated cut).
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, when the potential develops a deep well making the cut narrow

2 2 — 2
<|A| = ?'L) = %R_2§R£2—R: Frarrow = _(—mR_ 5

2—R£2—R

2

e In the limit of a narrow cut (very large £) the behaviour of the free
energy changes and starts to scale as the square root of the free energy
near the transition region

Olga Papadoulaki FZZT branes and non-singets of MQM 34/43
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R < 2 Saturated cut

e |n the left plot we depict the typical effective potential for small
Eopr —=ER 72
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The resolvent is 2(u) = log

ua2

The associated density of boxes is now given in the z-variable by

N () 1, |z|€]0,q],
Z) = 2
2 AICCOS A/ -ixmsy = Tot2 ALCCOS % . |z| € (a,b)

We can fix the edges of the support a, b in terms of the physical
parameters &, R :

That the leading asymptotic of Q(u)|y—s00 — 0 and

. — s 1 b
Imposing the normalisation condition ; —a = [ dzN(z)

The result is in terms of Elliptic Functions of the first and the second kind

T

I L] a ~ A A
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Consistent when 0 < & ~ 1RE/Q2-R)¢=2/QR) _ 2R « 1

This condition holds for relatively small £, that is the regime of a shallow
potential

This is precisely the opposite bound compared to the one we found for
the single cut unsaturated solution (in the wide cut regime), verifying the
transition region between the two solutions

2—-R

(2-R)®
4 8

8

R—%gﬁ

2R, _4
R 2-RE2-R . Fyide ~ —

(Al =mn) =

We observe that in this phase the leading part of the free energy scales
exactly dS Kazakov-Kostov-Kutasov

It also exactly coincides with the free energy of the unsaturated phase
solution near the transition point (wide-cut) and so do their first
derivatives, showing the expected continuous nature of the phase
transition

AEOHEEE08EREN-TTOFER0 05D . .m mF

Pirsa: 22100137 Page 50/59



e This is precisely the opposite bound compared to the one we found for
the single cut unsaturated solution (in the wide cut regime), verifying the
transition region between the two solutions

2—R 2 4
<|’\| :n> — TR_%gma Fwide = —

2
(2 —SR) R erin

e We observe that in this phase the leading part of the free energy scales
exactly as Kazakov-Kostov-Kutasov

It also exactly coincides with the free energy of the unsaturated phase
solution near the transition point (wide-cut) and so do their first
derivatives, showing the expected continuous nature of the phase
transition

Olga Papadoulaki FZZT branes and non-singets of MQM
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* In the left plot we depict the typical effective potential when R > 2

® In the right one the typical density of boxes that has a saturation region
with two adjacent narrow cuts
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becomes too shallow to support a metastable solution

Olga Papadoulaki FZZT branes and non-singets of MQM

R > 2 Unstable Potential Case

e The solution without saturation is pathological (both the density of boxes
and the resolvent become negative)

e The saturated solution is acceptable as long as (positivity condition for
the density of boxes)
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e solution without saturation is pathologica
and the resolvent become negative)

The saturated solution is acceptable as long as (positivity condition for
the density of boxes)

R-2
=

= <1
"e= Rio

a
b

For a narrow cut r ~ 1 which holds as long as &5 < 2573, which
makes this approximation more and more natural for very large radii and
bad for radii close to R = 2

The opposite regime of the narrow cut, is the limit where the ratio
r = a/b approaches the lower critical bound of the positivity condition
T — T

This is also the critical limit where the eigenvalues fill the metastable
effective potential as much as possible
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the density of boxes)

a(R +2)
R-2

a<b<

e For a narrow cut r >~ 1 which holds as long as .55 < 28-3 which
makes this approximation more and more natural for very large radii and
bad for radii close to R = 2

e The opposite regime of the narrow cut, is the limit where the ratio

r = a/b approaches the lower critical bound of the positivity condition
r—Te

e This is also the critical limit where the eigenvalues fill the metastable
effective potential as much as possible

Olga Papadoulaki FZZT branes and non-singets of MQM
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For the narrow cut:
positive

The free energy is Fiima), =~ —=log&eps + =23 Fe gy

The leading term is a logarithmic contrlbutlon, that could have the
interpretation of a “quantum non-singlet" contribution to the entropy

The situation is more interesting near the critical region, there we find
the scaling law

1

S
(Al = nye ~ EFFZ ~ 2 ~ P

The scaling of the free energy in the critical regime for R > 2 reveals an
opposite type (+4) of dressing for the winding modes, that become
normalisable and have support in the strongly coupled region of Liouville

This scaling means that a black hole can start existing as an excited state
in the spectrum of the theory
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string condensate?

Black Hole regime?

Thermal linear
Dilaton background

F ~logé&

gapped condensate

1.5 2.0 25

R-KT

vortices liberated

e The dashed lines signal phase transitions
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[ gravitating long
string condensate?

Black Hole regime?

Thermal linear
Dilaton background

F ~log&

gapped condensate

1.5 2.0 2.5

RKT

vortices liberated

e The dashed lines signal phase transitions

3.0 3.5 4.0

vortices bound in the IR R

o Tk ~ 1/RgT is the Kosterlitz-Thouless temperature, above which
worldsheet vortices get liberated and proliferate in the IR
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8
D-brane
physics

Thermal linear
Dilaton background

[ gravitating long
string condensate?
F ~log&

Black Hole regime? gapped condensate

1.5 2.0 2.5 3.0 3.5 4.0
vortices liberated R KT vortices bound in the IR

® The dashed lines signal phase transitions

o Tk ~ 1/Rkr is the Kosterlitz-Thouless temperature, above which
worldsheet vortices get liberated and proliferate in the IR

® The continuous lines are regimes of different behaviour (cross-over)
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