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Abstract: The phase diagram of a material is of central importance in describing the properties and behaviour of a condensed matter system. Indeed,
the study of quantum phase transitions has formed a central part of 20th and 21st Century physics. We examine the complexity and computability of
determining the phase diagram of a general Hamiltonian. We show that in the worst case it is uncomputable and in more restricted cases, where the
Hamiltonian is "better behaved”, it remains computationally intractable even for a quantum computer. Finally, we take a look at the relations
between the Renormalization Group and uncomputable Hamiltonians.

Zoom Link: https://pitp.zoom.us/j/960489877152pwd=WGtwWk1SUnFsanNIVTZVYjNmbTh3Zz09
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o What are quantum phase transitions, and why should you
care?

o Some definitions and technical details.
o Uncomputability of Phase Diagrams
o Complexity of Phase Diagrams for “realistic” Hamiltonains

o Uncomputability and Renormalization Group Methods
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Phase Transitions

e Regular phase transitions happen at finite temperature.
e Typically driven by temperature and another non-thermal variable (e.g.

pressure, magnetic field, compositions, etc).
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Quantum Phase Transitions (QPTSs)

e Quantum phase transitions happen at zero temperature and are driven by

some other non-thermal variable. A
r
53 /
e |Ising model Hjging = —J Ly — [ E X; \\ A
(i.5) N 4
: ’ : _ \ Quantum /
has two phase depending on the ratio ¢ = u/J A ocal
/
Doma '1—'.'.-;-.|'|\\ ,’FI pped-spin
H H H : uasiparticies \ / quasiparticles
e Phase is an equilibrium property, not related to ]TTT[Tltlll N i
O N\ s >

system dynamics. 9o g
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Quantum Phase Transitions (QPTSs)

e Superconductor-insulator phase transition.
e Quantum hall effect.

e Magnon condensation.

e Lots of other super-cool phenomena*.

e Essential for understanding material properties.
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Question: How hard is it to compute the
phase diagram of a Hamiltonian”?
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Definitions of Quantum Phase Transitions

Mathematical physics definition:

A Quantum Phase Transition (QPT) occurs in a Hamiltonian H(¢) as a function of
some non-thermal parameter ¢ where there is a non-analytic change in the ground
state energy Ao(@).

Necessary condition:
e Only way we can get a non-analytic change is if ground state and a first excited
state suddenly coincide in energy = spectral gap closes

A=A — A

Pirsa: 22100135 Page 8/56



e Necessary condition for a QPT: spectral gap
closes.

e May get something like:
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Definitions of Quantum Phase Transitions

Physics definition

A QPT occurs where there is a non-analytic/discontinous change in some order
parameter.

e Order parameter could be magnetisation, spin alignment, etc.
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Definitions of Quantum Phase Transitions

Physics definition

A QPT occurs where there is a non-analytic/discontinous change in some order
parameter.

e Order parameter could be magnetisation, spin alignment, etc.

e Typically there is a change in the connected correlation functions at the
critical point.
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Some Examples

AN

__——— Exponential Decay
Algebraic decay

alongtransition
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Uncomputability and Undecidability

What does it mean for a computational problem to be undecidable?

Given a problem, there exists no Turing Machine/algorithm running in finite time
which can correctly determine the outcome of every instance of the problem.
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Uncomputability and Undecidability

What does it mean for a computational problem to be undecidable?

Given a problem, there exists no Turing Machine/algorithm running in finite time
which can correctly determine the outcome of every instance of the problem.

e Classical example is the Halting Problem:
Given a TM, determine whether the TM halts or not.

e Undecidable = there is no algorithm that correctly determines whether
arbitrary TMs/programs eventually halt when run.
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The Phase Diagram Problem
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The Phase Diagram Problem

Phase transitions only occur in thermodynamic limit.

Must specify with finite amount of information = define a translationally
invariant Hamiltonian 2 i+1 = hjj+1 VY

Each local term only has algebraic numbers as matrix elements.
Hamiltonian’s matrix elements must be an analytic function of the @
parameter

Input: Description of local interaction terms, h; ;+1(¢)

Output: The phase diagram as a function of the free parameter .
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Our Results

We explicitly construct a Hamiltonian H(¢)in 2D with the following properties:

e Local interactions are translationally invariant and nearest neighbour.
e Local interactions are analytic functions of ¢, of the form

+ ™R+ h.c.

\ A, B have matrix

- elements O, 1 or
e System is in one of two phases: 1/v2

o Critical phase: connected correlation functions decay algebraically.
o Classical product : connected correlation functions are zero.
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Our Results

e System’s phase is undecidable for finite measure regions of @.

Yellow: algebraic decay of

I . . . . I r correlations.

Blue: zero correlation function.
Grey: ?2?

There exist Hamiltonians for which determining the phase diagram is
uncomputable.
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Our Results @i

More precisely:

There exists a Hamiltonian, of the form described previously, such that in its
phase diagram there is a finite measure interval around each ¢ € {275}
such that the phase in this interval depends on whether a universal TM halts
on input k in unary.
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Our Results: More Detall

Yellow:
e Highly entangled gs.
e Gapless, critical
phase.
e Algebraic decay of
correlations.

[ l I l
s 2—10 2—9 2—8 2—7
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Our Results: More Detall

Yellow:
e Highly entangled gs.
e Gapless, critical
phase.
e Algebraic decay of
correlations.

e Classical product
state.

e Spectral gap >'-.

e Zero correlations.

Grey:
e Unknown, but one
of the others.

[ l I l
s 2—10 2—9 2—8 2—7
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More generally, could be any of the following:

i 1 1 HE B 1
HE B 1
[ L]
= H 1 B H | ]
H B B B B I B B
) ]
= 1 1 | |
| L] i1 B B 1| ,
| | | | | | 1 | | | Bk 4
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Consequences

e The phase of Hamiltonian at finite size doesn't tell us
anything about the thermodynamic limit.

o The addition of a single particle to the lattice can completely
change the behaviour.

o The size at which this change happens is uncomputable.

o Cannot extrapolate physical properties from finite sizes.

e This means that, in general, phase diagrams at finite
size may not be reflective of the “true” properties of the
Hamiltonian for larger sizes.
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Consequences B
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e But does this mean that we can’t ever rigorously calculate phase diagrams for
any materials ever?

NO

e But it does mean that there are systems for which you can't.
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Related Results

e Our work builds off “Undecidability of the Spectral Gap™, who showed there

exists a Hamiltonian H (¢, ||) with the following properties:

o Nearest neighbour and translationally invariant.
o Determining the spectral gap is undecidable in terms of ¢, |90‘

e Hamiltonian is a discontinuous function of ¢, so we cannot draw a meaningful
phase diagram. 1B

e Hamiltonian’s matrix elements are not 7}
analytic fUﬂCtiOﬂS Of (P, SO the 6 ................................................................
ground State energy Cannot be j ................................
3t
2t
14
*T. Cubitt, D. Perez-Garcia, M. Wolf, arXiv: 1502.04135 : o o o 55 - Ocp
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Definitions of Quantum Phase Transitions

Mathematical physics definition:

A Quantum Phase Transition (QPT) occurs in a Hamiltonian H(¢) as a function of
some non-thermal parameter ¢ where there is a non-analytic change in the ground
state energy Ao(@).

What is a phase of the Hamiltonian:

H(p) =¢ ZZL'ZHl + |<P|ZX1 ?
: :
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For those familiar

e Use Feynman-Kitaev Hamiltonian to encode Turing Machine in ground state.

T
1
|%=W;M®mmW%>

where U, is the unitary for the t" step of the computation.

e Make Turing Machine run phase estimation to extract parameter ¢ from matrix
elements.

e Run Turing Machine on input ¢, and apply energy penalty when it halts.

e Energy penalty opens up the spectral gap in the halting case, remains gapless in non-
halting case.
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For those familiar

e Phase estimation is made approximate, so introduces error.

e To mitigate the approximation error we couple each history state Hamiltonian
a negative energy Hamiltonian.

e This splits the energy of each pair to be positive in the non-halting case, and
negative in the halting case.

e Then apply a similar construction to [CPW15] by combining with tiles.

Pirsa: 22100135 Page 28/56



Related Results

e Our work builds off “Undecidability of the Spectral Gap™, who showed there

exists a Hamiltonian H (¢, ||) with the following properties:

o Nearest neighbour and translationally invariant.
o Determining the spectral gap is undecidable in terms of ¢, |90‘

e Hamiltonian is a discontinuous function of ¢, so we cannot draw a meaningful

phase diagram. 19|
7t
ettt e e et
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3t
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*T. Cubitt, D. Perez-Garcia, M. Wolf, arXiv: 15602.04135 : A Gt S e 3 Ocp
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For those familiar

e Use Feynman-Kitaev Hamiltonian to encode Turing Machine in ground state.

T
1
|%=WEM®mmW%>

where U, is the unitary for the t" step of the computation.

e Make Turing Machine run phase estimation to extract parameter ¢ from matrix
elements.

e Run Turing Machine on input ¢, and apply energy penalty when it halts.

e Energy penalty opens up the spectral gap in the halting case, remains gapless in non-
halting case.
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Summary so far...

e Quantum Phase Transitions (QPTs) are phase transitions a T=0 associated
with a non-analyticity in the ground state.
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The Construction

e This Hamiltonian then either has energy >0 or -« depending on the halting of
a universal TM on input @.

e Combine with other Hamiltonians to get different phases depending on which
energy occurs.
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For those familiar

e Use Feynman-Kitaev Hamiltonian to encode Turing Machine in ground state.

T
1
|%=WEM®mmW%>

where U, is the unitary for the t" step of the computation.

e Make Turing Machine run phase estimation to extract parameter ¢ from matrix
elements.

e Run Turing Machine on input ¢, and apply energy penalty when it halts.

e Energy penalty opens up the spectral gap in the halting case, remains gapless in non-
halting case.
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?‘[ = %tile @ %quantum

‘ Map tiles to a classical
™ “ ]’ C J Hamiltonian:

' D,1
o l 0 1

l l J D Hyiting = E gt (tit;]
AR 2 — L (4,5)
0L 1 BOLD
J 1 B ' Penalise pairs that
0O jlAO ] 0 | O | don’t satisfy tiling
1 1] rules.
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Summary so far...

e Quantum Phase Transitions (QPTs) are phase transitions a T=0 associated
with a non-analyticity in the ground state.
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Summary so far...

e Quantum Phase Transitions (QPTs) are phase transitions a T=0 associated
with a non-analyticity in the ground state.

e We explicitly construct a 2D Hamiltonian with a single free parameter ¢ with
the following properties:

o translationally invariant,
o nearest neighbour,

o fixed local Hilbert space dimension,

o determining phase diagram is uncomputable.

= determining phase diagrams in general is uncomputable.
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More Realistic Hamiltonians

e Uncomputable Hamiltonians don't act like the Hamiltonians we expect to see
in nature:

o Properties change at large, uncomputable sizes.

o Infinite number of phase transitions.

e \We expect most materials to act as if they were in the thermodynamic limit
once we have a “sufficiently big” chunk of the material.

e We expect the phase diagram to be independent of size.
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More Realistic Hamiltonians

e How hard is it to compute the phase diagram of Hamiltonians which:

o are in the same phase for a fixed set of parameters for all |lattice sizes
L > Ly, Ly = 0(poly(n)),

o and only have a single phase transitions?

e First condition characterizes the set of Hamiltonians for which we can do
numerics on finite sized systems.

e Systems which do not satisfy the first property cannot be studied via small-
scale numerics.
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Estimating Critical Parameters

e Formalise determining where a phase transition takes place as a promise
problem:

CRT-PRM: Given a translationally invariant Hamiltonian terms h; ;. (¢) satisfying the conditions
given previously, and promise it has a single phase transition at ¢*. Is ¢* < a or ¢* > f8 for f —

a = N(1).
YES [
R — -
B A
NO 7 A
. unel’
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Estimating Critical Parameters

e Formalise determining where a phase transition takes place as a promise
problem:

CRT-PRM: Given a translationally invariant Hamiltonian terms h; ;. (¢) satisfying the conditions
given previously, and promise it has a single phase transition at ¢*. Is ¢* < a or ¢* > f8 for f —

a = N(1).
YES [
Theorem: CRT-PRM is QM Ay p-hard and - ¢'f' -
contained in POMAExp,
Proof is by a reduction to the local Hamiltonian NO [ A
problem. ‘_%: - T
, | |1
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Estimating Critical Parameters

e Or for a 2 parameter case for a Hamiltonian H (6, ¢):

2 1 2 | 2 1
lo-2 -5 lpi= = h-3 do— % Ao — 5 4 - A=t
@ A 5 2 ) . 2 @ A 5 2 5 ) 2
A g\ o A 7 : possible extent
1/poly(N) margin critical line @
/Ilnin(KN)+6 ( - \ "lmin(KN)‘Fé
\ possible extent
Q(1)
{mm(KN)* flmin(KN)+ : 2z L .....................................
Q 5 iical line 6°( )_J 1/poly(N) margin
9 P critical line 8* (¢
k- B 2 B
d £
9 9 0 k
Ap(B) - = 1 (B)- = 9 9 g
Ap(B) — = A (B) - =
20 20 0(B) - 55 1(B) - 5,

Theorem: CRT-PRM is P°M4exp—_complete in the 2-parameter case
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Containment Proof

e To prove the problem isn’t undecidable, make use of the property that the
phase at finite size L, = O(poly(n)) reflects the phase for all larger sizes.

e Foran L, X L, sized lattice, use algorithm from [Ambainis 2013]* to get
estimate of spectral gap (or order parameter) using poly(n) queries to a
QMAp oracle.

e Do a binary search in parameter space ¢ to determine where the critical point
iS.

e Algorithm requires poly(n) queries to QMA;yp oracle, hence contained in

peMAgxp : : - .
] **On Physical Problems that are slightly more difficult than QMA”, Ambainis, 2013
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Consequences

Even for translationally invariant, nearest neighbour Hamiltonians which:

o are in the same phase for a fixed set of parameters for all |lattice sizes
L > Ly, Ly = O(poly(n)).

o and only have a single phase transitions,

determining the phase diagram and critical points to 0(1) precision remains an
intractable task!
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Uncomputable Hamiltonians and The
Renormalization Group

(or why doesn’t the renormalization group work?)
arXiv:2102.05145
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The Renormalization Group

e Renormalization Group methods are widely used family of methods to
determine phase diagrams (and other properties) from the microscopic
description of Hamiltonian.

e Have been enormously influential in 20t Century physics.

e Basic idea:

o Apply an iterative process which removes degrees of freedom from the Hamiltonian, but
preserves macroscopic properties.

o This generates a flow in the parameter space of Hamiltonians.

o The flow tells us about the physics of the system.
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Initial Hamiltonian RG Simpler Hamiltonian
S S RG
H H' \
Even Simpler

R Hamiltonian
HH

Converges to fixed RG Apply RG lots of times

point Hamiltonian <
H*

|deally H* is simple enough that we can straightforwardly extract
its physical properties.
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An Example e

oD Ising Model:  H = ]ZZZ +BZZ
(t.J)

* T‘I‘@"d‘l\g‘j “H’lg W@ - " i

)Y jD |
LIk i i |

Z(m B)= Z(@ 7 8) Z(ﬁ T8
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Failure of RG Techniques

e Uncomputability of the phase diagram means that RG methods necessarily
can’t solve the phase diagram.

e \We expect fundamental theories to be renormalizable — if no “legitimate”

renormalization methods exist for uncomputable systems, it might suggest
renormalizable theories cannot be uncomputable!
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Failure of RG Techniques

e Uncomputability of the phase diagram means that RG methods necessarily
can’t solve the phase diagram.

e \We expect fundamental theories to be renormalizable — if no “legitimate”
renormalization methods exist for uncomputable systems, it might suggest
renormalizable theories cannot be uncomputable!

e \Why do RG methods fail on the uncomputable Hamiltonians seen earlier?

o Potentially no way of constructing an RG procedure for these Hamiltonians?

o Perhaps the RG procedures fail to preserve key properties such as the spectral gap?
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Failure of RG Techniques

Theorem

It is possible to explicitly construct an RG scheme for the uncomputable
Hamiltonian seen previously such that:

Each step of the RG scheme is efficiently computable.

All properties reflecting the phase of matter are preserved (e.q.
spectral gap, order parameters).

The Hamiltonian flows to one of two fixed points.

The overall RG flow is uncomputable, and determining which fixed
point it flows to is undecidable.
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Failure of RG Techniques

e Good, well formed RG schemes do exist

for uncomputable Hamiltonians. Novibe-
of heratios

A

e But they have to flow in an
uncomputable manner.

e Demonstrates new and previously
unseen behavior.

e EXxpect this behavior to be generic for
“‘good” RG schemes applied to
uncomputable Hamiltonains.
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Overall Summary e

e Determining phase diagrams is an uncomputable task!

o Even for Hamiltonians with “natural properties”, it is
computationally intractable.

e RG methods fail, and in the process show novel and
unseen behavior.
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Further Questions @i

o Can determining phase diagrams be harder than
“uncomputable”?

o Uncomputability of finite temperature phase transitions?

o Robustness of these results to perturbations in
Hamiltonian?
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