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Abstract:

Can degrees of freedom in the interior of black holes be responsible for the entropy-area law? If yes, what spacetime appears? In this talk, | answer
these questions at the semi-classical level. Specifically, a black hole is considered as a bound state consisting of many semi-classical degrees of
freedom which exist uniformly inside and have maximum gravity. The distribution of their information determines the interior metric through the
semi-classical Einstein equation. Then, the interior is a continuous stacking of AdS 2 times $"2 without horizon or singularity and behaves like a
local thermal state. Evaluating the entropy density from thermodynamic relations and integrating it over the interior volume, the area law is obtained

with the factor 1/4 for any interior degrees of freedom. Here, the dynamics of gravity plays an essential role in changing the entropy from the
volume law to the area law. This should help us clarify the holographic property of black-hole entropy. [arXiv: 2207.14274]

Zoom link: https://pitp.zoom.us/j/993864336357pwd=VzILV2U4T1Z0OY mMRVbGOY VIFlemVVZz09
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Plan: Self-consistent discussion

* 1. Interior metric Iuv ﬁ_:_'f"""&--ﬁ-x-xSelf—consistent

* 2. Local thermal behavior of the d.o.f.
/

‘<
* 4. Self-consistency to G, = 87TG<1.0|TW|1/)) /

* 5. Conclusion and discussions

e 3. Derivation the area law
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Setup: BH as a semi-classical bound state (3/3)

(ii) The acceleration required to stay at 7 is semi-classically maximum

(i) uniformness
|

ol A e
a,(r) = const = 0 (C_lp) — 0(a%)

=Why? Motivation?

(1) BH = maximum gravity,

(ck: @, (F)lcenwarzseniia = —,_,q % if a horizon exists atr = a)

2o ll=
r

A
Q

[Parentani and Potting,

(2) Minimum resolution of spacetime = [, = VAG, Sl

while time scaleatr =——.
an(r)
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Interior metric from Interior mformatlon (1/3)

—— -_——
e —— .
s

-~
~
-~
L

‘o N ‘quanta A quantum has [
a7 e i X i N
g jm 1 bit of information >
:
\ : A h- /
= r a8 i
o & Eloc | .7
e Ar = o (n)Ar B

—
—— -

* Suppose N quanta with 1-bit of information and local energy €,
around r inside. Then, from a general formula, we can show
loc

iContribution to ADM energy of the part within r in a spherically symmetric system
r

i M(r) = 47Tf driniE =T (nl))

et e il o e e e e L e I
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Setup: BH as a semi-classical bound state (2/3)

(i)The d.o.f. are distributed inside uniformly in the radial proper

length, d7* = ,/g,.(r)dr.

=Why? Motivation?
(1) This is simple!
(2) This should be the most typical configuration.

S A Adiabatic formation of BH
. = Uniform interior structure
=thermodynamically typical
K - R [Kawai-Yokokura 2015,2021]

High temperature Low temperature

Note: The following discussion is independent of the details of the formation process.
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Interior metric from Interior mformatlon (2/3)

—— -_——
e —— e
bt SR

-~
-~
~
L

L N ‘quanta A quantum has [,
o i N
g jm 1 bit of information .
[ |
‘1\ > /\ h J
= E r : a8 i
o & Eloc | .7
o AP =g (M)Ar LaT
* We can estimate the entropy per unit proper_le_ngth as e e
N N,/ r ' AFNAEOCN I
s(r)~ L() = const. e VGrr(r) |
r o -
* This requires us to set . {UAOEN R Sorc
T
r)y=—, o:const.
g?"r( ) 20_

* Then, the total entroiPy is given by , demand

.
§= J’dr\/gr,.(r)s(r)'vf dr grr(?”) g '(;—2
P

g
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Interior metric from Interior information (3/3)

* Next, we use the condition (ii): i

- d, log \/_gtt(r) !

1 1
_— T (C_lp): V2072

|

J | I
: an = |guva#a%|2 i ?,;g, i : ¢ =001) =1 i
| (Z;i = n'vvvn#’ 1 : {\\,Q’% i & zUNng !
| Lo e, i = Nr}' =0 =1 |
n*9, = (29u() 29: . B T '

. i

* This leads to N

* (o,m) will be determined by G, = 87G(Y|T,, |¢) later.
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Interior metric (1/2)

* We have obtained

e 72
=——14
dsizn = —e20n (2 + Z—d?" + r?dQ?
g
N | | | G~NIZ(withN =0(1) » 1) |

* Not fluid: Using Einstein eq

L=
Tty = (T7) ——]( (TEY) < (Tg) =

reqwre 0

1
l6mGon?

=The interior is not fluid.
This supports the d.o.g.

8mGre’

* No singularity:

1 1 1
R, \/RWRW,JRmﬁRWB =0 (an ) =0 (le) KO0 (Ip) for N > 1

forr > l:LJ semi-classically maximum
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Interior metric (2/2)

* By connecting this to the Schwarzschild metric, we obtain

Schwarzschild metric

Y ja ay~1
ds2,.,=—|1——)dt2+(1—=] dr?+ridQ>
T T
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Interior metric from Interior mformatlon (2/3)

—— -_——
e —— .
s

-~
~
-~
L

L N ‘quanta A quantum has [,
o i ~
g ' | 1 bit of information .
[ |
\\ . h /
= E r : a8 i
o & Eloc | .7
T AF =/ grr (T)Ar S
* We can estimate the entropy per unit proper length as eGE R e T
N N/ g, (r | AF~Ajoe~ ——=|
s(r)~ L() = const. T VGrr(r) |
r :

(i) uniform cond.

This requires us to set ;

r
L= == o: const.
g‘r‘r( ) 20_
, demand

Then, the total entroiPy is given by __
o d Jo® " NG (r) L renr—
2 g‘r?‘(r)s(r)w i lz I (N,a) may depend on a. I

) = s e

Thus, we reach
2

4 2
grr(r) = %' JNN!P
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Interior metric (1/2)

* We have obtained

e 72
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Interior metric (2/2)

* By connecting this to the Schwarzschild metric, we obtain

Interior metric 20- LZ _T-Z Tz [Kawai-Yokokura
ds? = — » 200 Jt2 + — dr? 2402 | 2015
Sin = e Bk i
e R? 20
exponentially large redshift |
=Time is frozen inside! i
|

Schwarzschild metric

¥

: ay - a
dsout=—(1—;)dt +(1—;)

1
dr? + r?dQ?

roper distance
20 i 20 a? 20 —
R=a+—>a AF = g (R)— =~ |o——=V20 = O(WNL,) > L,
a a

= physically meaningful
=The bound state has no horizon
but looks like a classical BH from the outside.
) ) . [Kawai-Matsuo
=This dense object is the BH! Yokokura 2013]
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2. Local thermal behavior of the d.o.f.
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Interior metric from Interior information (3/3)

* Next, we use the condition (ii): i

- d, log \/_gtt(r) !

1 1
_— T (C_lp): V2072

|

J | I
: an = |guva#a%|2 i ?,;g, i : ¢ =001) =1 i
| (Z;i = n'vvvn#’ 1 : {\\,Q’% i & zUNng !
| Lo e, i = Nr}' =0 =1 |
n*9, = (29u() 29: . B T '

. i

* This leads to N

* (o,m) will be determined by G, = 87G(Y|T,, |¢) later.

irsa: 22100101 Page 16/38



Interior metric (1/2)

* We have obtained

e r2
=——14
dsizn = —e20n (2 + Z—d?" + r?dQ?
g
N | l | G~NIZ(withN =0(1) » 1) |

* Not fluid: Using Einstein eq

L=
Tty = (T7) ——]( (TE)) < (Tg) =

reqwre 0

1
l6mGon?

=The interior is not fluid.
This supports the d.o.g.

8mGre’
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Interior structure

spherical continuous concentric
uniform = stacking of spherical

interior @Iike “shells”).

* Each one accelerates due to the self-gravity at

n 1
@, = ——
2 /n—1L
* The metricis AdS, (of L) x S?(ofr).
ga o L T
dsf = ——ze 297 dt? +—dr? +r2dQ?
e " -
= ;(—drl + dz?) + r(2)?d?
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Interior structure

spherical continuous concentric
uniform = stacking of spherical

interior @Iike “shells”).

* Each one accelerates due to the self-gravity at =g =2
ol
“u:ﬁf' = 2 Vi
4/ n F R = *F ik (T )
* The metric is AdS, (of L) x S?(of r). L = 20n2~VNL,
=The interior is AdS, [ofL) X 5 (ofr).
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Local thermal behavior

* The accelerating shell feels the Unruh temperature:

[Deser-Levin, Jacobson]

* In fact, particles are created around the shells due to the self-gravity as
1 2-7n ,
= 4nrr?jtm, = — ——~—T?, 1D thermal radiation

(similar to the particle creation by a moving mirror)
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Local thermal behavior

* The accelerating shell feels the Unruh temperature:

[Deser-Levin, Jacobson]

* In fact, particles are created around the shells due to the self-gravity as
1 2-n :
= 4nrr?jtm, = — ———~—T?, 1D thermal radiation

(similar to the particle creation by a moving mirror)

o

forany d.o.f.
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Derivation of the area law

* In the local equilibrium, 1D Gibbs relation .,
TiocS = P1a t P1d Pra = 4T (T,
holds and - | ;“,_zglgfflnr .
2—1 B T
Pida = e P1d- 7 ;81161"2
. / =y
plays a role of the equation of states. | 7
from G, = 8]’(6(1/)' v|1/))
* Then, we can evaluate the : Lp e
_Patpa_ 12 272 1 St
SPld = i . ol
Tioc Tloc n h n ZG i L =+207?

Here, G, = 8-IIG(1/)|TW|¢) plays the essential role.
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Derivation of the area law

* In the local equilibrium, 1D Gibbs relation .,

TiocS = P1a t P1d - pra = 4 C(T),
' | . Pig = 4r¥(ry)
grelfeelalel i B e e el
z = n —(T}) = —1
Id T Ad § 0 Bntr2
: - an =Ty
plays a role of the equation of states. | i ]
from G, = 8]’(6(1/)' le/»’)
* Then, we can evaluate the : Lp e
_Patpa_ 12 27l 2 1 St
w2V T E 2nL
Toe  Tioe hon2G _L=y2om”
Here, G, = 8-IIG(1/)|TW|¢) plays the essential role.
= Integrating it over the volume reproduces the area Iaw  R_ail
R r2 Seri i
fdr\/—gw = [Car =T == T o
0 20 5 L5

This holds for any d.o.f.!
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Universality of the area law

* Let us review what we have done so far.

2 T'Z

Secl. Demand S « — for interior d.o.f. =g, < —
I-ﬁ, r g

h
Sec2. QFT on the b.g. g,, = Local thermality at T, = Z—;L for any d.o.f..

Sec3. Exact derivation based on thermodynamics at T},
| 2ny2a
==
i R A
= o cancelsoutin § = fo dryg..s(r) = oo universally!

=S

Note:
-The above discussion holds thanks to G, = 87IG(1,I)|T#V|¢).
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Self-consistent solution (1/2)

* Q: Does the metric satisfy G, = 87TG(1/J|TW|1/))?
=Yes. Indeed, (0, n) exist satisfying it.

* For simplicity, let’s consider conformal matter fields and focus on
I

Gy = 8nG (YT} |v) L 8nGh(cyF — aywg + by OR)
4D Weyl anomaly

IR b g o O o A I T e T R R e N S 0 e R T T b L O e T Y PR e i SR

=This eq hold for any state [).

Note:
- Dynamics of the quantum fields are very different in 4D and 2D.
The self-consistency holds for non-conformal cases. [Kawai-Yokokura 2020]
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Self-consistent solution (2/2)

* For the metric, we have
Gy = 8nG(Y|T; |y) = 8nGh(cw CuryapC™ ™ — awg + bywOR).

1 ]2 1
= — = 8mlyc
0'772 p-w 0.2.,74
87rl§ G P
= (I > Wlth CI/VNN B3 ‘1. [Kawai-Yokokura 2015]
3n

* Furthermore, we can evaluate directly (1/)|Tw|1/)) in the g,,, and
an excited state |y) at T, by dimensional regularization and a
perturbative calculation to determine 7. [Kawai-Yokokura 2020}
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Self-consistent solution (2/2)

* For the metric, we have
Gy = 8nG(y|T |y) = 8_nGh(chMﬁCf1”“ﬁ — ay g + by OR).

—1 8ml?
= = 8ml;c
0772 p-w 0.2.,74
8miicy
= (I 3 > Wlth CWNN B3 ‘1. [Kawai-Yokokura 2015]
n

* Furthermore, we can evaluate directly (1/)|Tw|1/)) in the g,,, and
an excited state |y) at T, by dimensional regularization and a
perturbative calculation to determine 7. [Kawai-Yokokura 2020}

* Thus, the full 4D dynamics of the d.o.f induces the large

acceleration, pressure, and curvatures self-consistently.
1 1 1
a~7,  (Tg)~zm R~z L=y2om*~VNi,
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Derivation of Hawking temperature

* Suppose that the bound state is in equilibrium in a heat bath.

surface region: n — 2

————————————

Tolman’s law

* Then, Tolman’s law holds:
TV=9u( > @) = Tioey/=gu G =) | _{1=2en”

T 1 a T 20 h ‘ h
== = = ~ —
Ve a? 2n[20n2 'n-2  4ma
Hawking
Temperature!
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5. Conclusion and discussions
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Conclusion

* BH = bound state of many interior semi-classical d.o.f..

* This can be realized as the self-consistent solution of G, = 87rG(1/)|Tw|1/)):
il Hastis e
ds? = ——e 201 dt? + %drz + r2dQ?

No horizon
or singularity
for N>>1

* The area law holds universally for any interior d.o.f.:
R
, _ A
5 = [ drian @) = 7.
0 /Hp
where gravity changes the entropy from the volume law to the area law.

=The information itself is stored in the “bulk" d.o.f. although its amount is
expressed as the “boundary” area.

=Reconsider the meaning of holography!
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Discussion

* How plausible is the configuration?
= Consider it from a view of the entropy bound. [Bekenstein, Bousso,..|

i * Time evolution of the formation [Kawai-Matsuo-Yokokura 2013, Kawai-Yokokura 2020] i
| * Direct derivation for conformal matters [Kawai-Yokokura 2021] !
! i . o I
I+ Semi-classical stability [Work in progress, Ho-Kawai-Liao-Yokokura] !

* A method of constructing a metric g, (x) from § and s(r).
1) Modify the interior metric by corrections to the area law.
2) Find interior metrics for other configurations.

* Direct microstate counting? [Kawai-Yokokura 2020]

* Information recovery from the interior structure?  [kawai Yokokura 2016]

Thank youl!
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Black hole entropy

* In quantum theory, we don’t know yet what a black hole is.

* The notion of spacetime geometry should emerge only
under a certain limit.

= Horizon may be an approximated property of black holes.

* The notion of information is quantum mechanical.
= A black hole should be characterized more properly by

......................

d ey A = 4ma?
ArM?\ |
entropy-area law § = ]()gQ = 12 _(: = )i 4= 2GM
p 1p = VhG,m, = /G|
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BH=bound state of many d.o.f.
* What is the origin of S = logQ = 4%?

=Black hole = gravitational bound state of some d.o.f.

: A
responsible for § = PIE)
Strings/fuzz ball?

[Strominger-Vafa, Mathur...]

2
14 . .
discrete spacetime?
A —A\\ [Ashtekar-Baez-Corichi-Krasnov,...]
/ A
i

e N\ /Q\ graviton condensation?
E— /

[Dvali-Gomez,...]
\
AN

brick wall/semi-classical
dynamical modes?

[tHooft, Barvinski-Frolov-Zelnikov,...]

+ more approaches...

= Where do the d.o. fhve?

(i) Around the surface?
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BH=bound state of many d.o.f.

* What is the origin of § = log ) = 4%?
D
=Black hole = gravitational bound state of some d.o.f.

: A
responsible for § = P
. P
Strings/fuzz ball? discrete spacetime?
——— A [Ashtekar-Baez-Corichi-Krasnov,...]
Vi

\
/\ /\ | graviton condensation?
/\ / [Dvali-Gomez,...]
,A"//

hAS

[Strominger-Vafa, Mathur...]

brick wall/semi-classical
dynamical modes?

[tHooft, Barvinski-Frolov-Zelnikov,...]

+ more approaches Note: The self-gravity of interior
d.o.f can change the volume law of

the entropy.
ex: spherical thermal radiation with radius R
S‘*‘H] iy H.’B/Z

= Where do the d. O.f. live? b o
(ii) Inside somewhere?

=We try to consider case (ii) today.
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Setup: BH as a semi-classical bound state (1/3)

* Consider a spherical static BH as a bound state of many interior
semi-classical d.o.f. satisfying

semi-classical Einstein eq Gﬂv — 8T[G ('l]b | T[JV |'L/)), for any d.o.f.

(gravity = classical metric g, matter = quantum fields (fi)

size:R=q= 2(‘M &Determined later
mass: M (> my,)

* As a simple trial, we focus on a configuration s.t.
(i) Uniform distribution in r-direction
(ii) Semi-classically maximum acceleration

= We will construct the interior mertric ’ , '
dsizn = gtt(r)dtz = Irr (T_)drz + r&dﬂd
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Setup: BH as a semi-classical bound state (2/3)

(i)The d.o.f. are distributed inside uniformly in the radial proper

length, dt = /g, (r)dr.

o = © —

SReVITINy

— -
T ———

=Why? Motivation?
(1) This is simple!
(2) This should be the most typical configuration.

Adiabatic formation of BH
= Uniform interior structure

=thermodynamically typical
[Kawai-Yokokura 2015,2021]

«—
High temperature Low temperature

Note: The following discussion is independent of the details of the formation process.
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Setup: BH as a semi-classical bound state (3/3)

(ii) The acceleration required to stay at 7 is semi-classically maximum

(i) uniformness

1) | feloay»]
a..(r) L const =0 | — | On g |
Cl, | |

=Why? Motivation?

(1) BH = maximum gravity,

T

a
_¢2 . . .
(cf: an (M lschwarzschita = \[7 —roq % if a horizon exists atr = a)
2 1=
" r"

(2) Minimum resolution of spacetime = [, = VAG, <Smtimsiis diy

Rovelli and Vidotto, ....]

while time scale atr = ——.
an(r)
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