Title: Special Guest Talk - 'The serendipitous road to a Nobel prize' Speakers: Anthony Leggett Collection: The Day of Discovery Date: October 20, 2022 - 2:30 PM URL: https://pirsa.org/22100069

Τ

THE SERENDIPITOUS ROAD TO A NOBEL PRIZE

Anthony J. Leggett Department of Physics University of Illinois at Urbana-Champaign

Raman Research Institute, Bengaluru

2 February 2019

Pirsa: 22100069

THE ³HE NMR PUZZLE (cont.)

RRIP-5

In A phase, precession freq. v is larger than value (γH_{ext}) in N phase, and given be expression of form

 $v = \gamma \sqrt{H_{ext}^2 + H_{int}^2(T)}$

Simplest interpretation:

nuclear spins process around Htot not Hext

Problem:

Only possible origin of H_{int} (T) is other nuclear spins

Max. value of field of one nuclear spin on another (at distance of closest approach of atoms) ≤ 1 gauss.

But, experimental value of $H_{int}(T)$ is ~ 30 gauss!

FIRST EVIDENCE FOR BREAKDOWN OF QUANTUM MECHANICS?

RRIP-6

RESULT OF MORE SOPHISTICATED APPROACH:

- Simple classical argument too naive. (no "transverse" internal field)
- Nevertheless, indeed predict formula

 $v = \gamma \sqrt{H_{ext}^2 + H_o^2(T)}$

where $H_0^{a}(T)$ is proportional to average value of nuclear dipole

Experimental value of $H_0(T) \rightarrow E_{dip}(T) \sim 10^{-3} \text{ ergs/cm}^3$

- energy difference (ΔE) between "good" and "bad" orientations $< 10^{-7}$ K per pair.
- thermal energy (E_{th}) (= k_BT) ~ 10⁻³ K.

 \Rightarrow preference for "good" orientation over "bad"

 \Rightarrow resulting value of E_{dip}(T) much too small to fit experiment. Need preference for "good" over "bad" ~ 1 not $\sim \Delta E/E_{th}!$

 \Rightarrow many sleepless nights in late June 1972...

SPONTANEOUSLY BROKEN SPIN-ORBIT SYMMETRY:

the analogy with ferromagnetism

FERROMAGNET

 H_{ext} \uparrow \downarrow \downarrow good bad

difference in energy per spin = ΔE (small) Above Curie temp. ("paramagnetic" phase), spins

behave independently \Rightarrow thermal energy E_{th} competes with $\Delta E \Rightarrow$ polarization only $\sim \Delta E/E_{eth} \ll 1$

Below T_c ("ferromagnetic" phase): strong (exchange) forces constrain all spins to lie parallel: $\uparrow \uparrow \uparrow \uparrow \uparrow ...$ or $\downarrow \downarrow \downarrow \downarrow \downarrow ...$ "good" "bad"

> $E_{good} - E_{bad} \sim N\Delta E \gg E_{th}$ $\Rightarrow polarization \sim 1$

$\begin{array}{c} LIQUID {}^{3}HE \\ \uparrow \qquad \uparrow \qquad \uparrow \\ good \qquad \qquad bad \end{array}$

RRIP-7

difference in energy per pair = $\Delta E < 10^{-7}$ K In normal phase, pairs behave independently $\Rightarrow E_{th}$ competes with $\Delta E \Rightarrow$ "polarization" (pref. for good orientation over bad) only $\sim \Delta E/E_{th} \ll 1$.

In A phase, assume: strong (kinetic-energy, VDW) forces constrain all pairs to behave in same way \Rightarrow either all "good" or all "bad"

 $\begin{array}{c} E_{good} - E_{bad} \sim \underbrace{\textbf{N} \ \Delta E}_{} \\ \ast \ E_{th} \end{array} \sim \underbrace{ -10^{23}! } \end{array}$

 \Rightarrow polarization can be ~ 1

But... what would make all pairs of nuclear spins behave in the same way?

A possible answer: Cooper pairs form and undergo Bose condensation! (then must all behave in exactly the same way, including internal (relative) configuration)

Spring of 1973: 1-month visit to Cornell U. (thanks to Bob Richardson) serendipity no. 4: Kyoto work on 2-band superconductors plays vital role!

⇒ detailed microscopic theory explained existing data and predicted inter alia: behavior in longitudinal NMR experiment

No such experiments existed, but done in summer of 1974 by Doug Osheroff, confirms theoretical prediction.

Another crucial theoretical development in spring 1973: Anderson-Brinkman theory of stability of A phase (difficult to understand in "naïve" BCS theory).

RRIP-9