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Abstract: Corner symmetries are those diffeomorphisms that become physical in codimension two, in that they support non-zero Noether charges.
Recently we have shown how to extend phase space so that all such charges are integrable and give a representation of the corner symmetry algebra
on this extended phase space. More recently we have studied the coadjoint orbits of what we now call the universal corner symmetry. One finds that
certain complementary subalgebras, the extended corner symmetry and the asymptotic corner symmetry, can be associated with finite-distance and
asymptotic corners, respectively. There is a simple geometric interpretation here in terms of an Atiyah Lie algebroid over a corner, whose structure
group isthe universal corner symmetry. The local geometry of a classical spacetime is encoded in related geometric structures.
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Corners and Quantum Gravity

- in gauge theories, charges have support in codimension-2  Reqge Teiteibom 74]

» in gravitational (or any diff-invariant) theories, we say that Diff(M) is a
local symmetry

this in turn means that physical Noether charges are (almost always) zero
- at best, only a few diffeomorphisms will support charges

this is true independent of any dynamical details of a given theory

- the world is quantum!
» classical limits are just that, some effective emergent description
quantizing classical geometries has limited applicability

* quantum theory, whatever it is, is likely to be organized by symmetry

- this leads us to the cormn

[Donnelly, Freidel, Geiller, Qliveri, Pranzetti,
Speranza, Speziale, ... '16-'21]
[Luca C., RGL ‘21-'22]
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Outline

|. review how we think of corner symmetries
focus on geometric concepts
* e.g., embeddings of corners in spacetime

- leads to an extension of phase space to include modes supported on

subspaces 4+— a modification of Donnelly-Freidel

+ charges become integrable, symmetry algebra represented properly on

extended Phase space [Luca C., RGL, P-C. Pai '21]
[Freidel 21]

2. set up orbit analysis for corner symmetry
» we now call the full symmetry the universal corner symmetry (UCS)
+ this is just group theory: corners and their properties are an interpretation
- two important subalgebras emerge:
+ extended corner symmetry (ECS) — corresponds to finite-distance corners

+ asymptotic corner symmetry (ACS) — corresponds to asymptotic corners
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Outline.2

- the analysis leads to an interpretation in terms of a Lie algebroid
over a corner, with the corner symmetry playing the role of
structure group

- we identify simple moment maps between coadjoint orbits and a
phase space, now interpreted in terms of a certain associated bundle
over the corner

» can be thought of as the building blocks of a classical spacetime

* a bulk metric emerges from sections, connections on these corner bundles

- an incomplete discussion of quantum issues, ...
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UCS

- the universal corner symmetry is the maximal finitely-generated
subalgebra of diff(M) associated with a corner

Diff(S) x GL(2,R) x R? UCS
- an embedding is described by a map ¢ : Si, = M
» described in local coordinates by ¢ : 0® = y* (o)

- |ocal adapted coordinates on M: y* = (u*,2")

- the trivial embedding has

qbf{o) : 0® = (u%(0) = 0, z*(0) = 0.,0%)
« a vector field may be written
£ = £(u,2)8, +£(u, 2)2,

and the coefficients expanded for points

close to the corner
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UCS as Maximal Embedding Algebra

- vector fields of the form
£8(u, x) = &8y (x) + €02, (U™ + 1) arorbr T F
(11, %) = o))+ Eayark VT + 3 ppannelPr T

close under the Lie bracket to Diff(S) x GL(2,R) x R?

7

: linear transformations of
diffs of corner

2 normal directions

A

[‘iy §2] = [5:(0)1- g(o)zPQi
H—/ ~ -

2ifi(S)
+ [§(0,1(£?0)2) = §w)2(£("o)1) +§(1)2ba§fg)1 = f{l)lbaé(an)%:l dy
Diff(S) ;::’1_3 on RX gl(k, R) acts on R*
b o ~
+u [ . ‘[5(111' 5(1)2] i ‘5(0;1(5(1)2"-:) = §(0)2(E(1)1 bC)]Qb‘

gl(k.R) Diff(S) act:;n ol(k,R)
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Corner Symmetry

- in a diff-invariant theory, Diff(M) is a gauge symmetry

- the interpretation of the universal corner symmetry is that it
contains the diffeomorphisms that could become physical in the
presence of a corner

* support charges, realized as Hamiltonians on a suitable phase space
« "could” because in specific examples only a subalgebra is supported

- we will see that this is because the non-zero charges in a given theory
are associated with specific coadjoint orbits

- indeed, in the orbit analysis we will see that certain subalgebras
come to prominence

Pirsa: 22100043 Page 8/26



UCS vs. ECS or ACS

- in E-H gravity, not all of UCS is supported on corners
» finite distance corner. generally supports (orbit of) ECS
[Fraldel - &t al "17-21]
Diff(S) x SL(2,R) x R? = Diff(S) x H s, HeL 2104

* e.g,at a boundary of some subregion

no scaling requirements, fields uncharged under Wey!| subgroup — decouples

- asymptotic corner: generally supports ACS
Diff(S) x GL(1,R) x R? = Diff(S) x H,,

* bulk diffeomorphisms restricted to respect some asymptotic structure

(e.g., second order pole in metric) — fields charged under Weyl subgroup

relevant to asym-AdS, asym-flat, ...

- depending on context/beliefs/desires, one may also reduce Diff(S$)
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The Orbit Method

- extending the phase space to include the embedding of a corner in a
classical spacetime leads to integrable charges

- a purely geometric effect

« extends to all gauge theories

- this seems tied to particular classical spacetimes, covariant phase
space technology, etc.

- it is of interest to study the corner symmetries directly, without
reference to a classical system

- i.e., we release the UCS from its defining representation, and study
its features abstractly
» corners will then re-emerge in terms of representations

related work:
[Barnich-Ruzziconi '21]
[Freidel et al '21]
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The Orbit Method

- the orbit method can be thought of as a tool for studying
representations of (certain) groups

« for particle physicists, it is essentially the little group analysis that leads to
a codification of particle quantum states

in this case, the Poincaré group, SO(1,d — 1) x R4

- the groups that we will study here are simple generalizations

- what are usually taken as symmetries (e.g., BMSWV) are contained in
these algebras

* in fact there is a concise interpretation for this fact in the orbit analysis
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- it turns out to be useful to first study the groups

Diff(S) x GL(2,R) x R?

l

H = GL(2,R) x R?
Hs = SL(2,R) x R2 t

b

bs Lie algebras

B

- this can be thought of as working at a point in S

- later we will add Diff(S) back in

- asimple interpretation in terms of an Atiyah Lie algebroid with structure
group H

» so for these groups, Lie algebras are replaced by Lie algebroids
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Coadjoint Orbits

the orbit method just utilizes the fact that a Lie algebra acts on itself
ad, 1 v — adyv = [p, v, Vi, veg
the dual of the Lie algebra g* : g — R
m(p) € R, Vmeg', pecg
the Lie algebra also acts on the dual via the coadjoint

ad; : m — ad;m, adém(g) = —m(ad,v), Ymeg' ,ueg

should regard adém =0,m € Tpg" as a tangent vector
- basic fact: exponentiating this action leads to a coadjoint orbit O, C g*
- ata given point m, ad;m will trace out a subspace O, C Tmg™

while g* is generally Poisson, O, is symplectic, carrying the KKS

symplectic form - .
Kirillov-Kostant-Souriau
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ucs Coadjoint Orbits

for ucs, the Lie algebra can be written in terms of a basis

Wil al=06ta=oat s st = a0t [ty t] = 0.

and the dual basis satisfies

tab(‘t-cd) = 12,5, tab(ﬁc) =0, ta(ﬁbc) =0, ta(ib) = 4%,

typical elements then written as
hou=0%1t0+ bt b* 5> m= Sut°, + P,t?
and so the pairing reads

gl =BT, P iR

we then find that a tangent vector at the point m has the form
adim = ([J, 0]%, — ban) th, + PpdP t°.

Page 14/26



UCS Coadjoint Orbits

- equivalently, we can think of this in terms of the components of the
tangent vector,

diden = JlEs bl = P =, 08

- in the case of UCS, this is invertible:
e e
075 = —0, K™ PPy + (PO, J°ci™ P36 + 8, PPy lPy — P.Jyk™ 6, P6%p.
Eab
=~

- this invertibility means that UCS has no Casimirs, and that generic
orbits are 6-dimensional and (locally) symplectic

ab

K G, =P [ 5D

* the KKS symplectic form is given by
Q) ) = — P[0, 81%, - P.(6°.5° - 8% bF),
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UCS Coadjoint Orbits

- in that derivation, we made use of the UCS invariant tensor

ab
3

o
+ £ is an invariant tensor of ECS, while (3 is a cubic Casimir of ECS

Coh= P e

R_ab

- it’s useful to rewrite the symplectic form in terms of the variations,

QO (1) = 6,Pa(6,3750°c + J710,J° )% Py — 3(Pa6 07 )k (Pab, I ) + 36, log G368, T — (1 ++ )

- where we separated out the trace pieces,
TR S R =00

Oplog G =w:=1tr @
- this separates the symplectic form into 4+2 .

- we would like an explanation for this fact
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ces Coadjoint Orbits

- consider repeating the analysis for ecs
+ the dual space is 5-dimensional
orbits can’t be 5d, because they will be symplectic

* a generic orbit is 4d, along which G is constant

» can think of the dual space as foliated by symplectic leaves, each labeled by
the cubic Casimir

- symplectic form on the leaves can be obtained locally

- the relations between parameters and tangent vectors can no longer be
inverted directly, since the tangent vector components are not independent

i) 2P05,u-}35£~701 + P15#-7105g—701 + 0, P16, JZ
La e 2Py — hP) s

+ can be thought of as coming from first term in ucs symplectic form
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acs Coadjoint Orbits

- one can perform a similar analysis for acs
» in this case, the dual space is 3d and a generic orbit is 2d
* the symplectic form on the orbits (on a coord patch with Py # 0) is

8,Pob,T — 6,T8,Py
Po '

@R ) =

which can be thought of as coming from the second term in the ucs
symplectic form

- infact, H, = GL(1,R) x R? and H. = SL(2,R) x R? are ideals in
= 2
» their orbits are immersed in h* H=GL(2,R) xR
- at a given point, they are complementary

« the acs orbits have (under suitable circumstances) a subalgebra acting as
BMSW
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The Full UCS

- Now we put back in diff($):

» given coordinates on $
X =¢£(0)35 + 0°(0)t% + b?(0)t,
M = ag(o)da? + J2(a)t?, + Pa(o)t>.
* and the invariant pairing ( ,) : UCS® ® UCS — R takes the form

M(E) = ica+ 6%, + b°P,, (M, X) = / vols M(X)
i S

- interpret this as the image under a moment(um) mapping of an
integrated charge Hx

- the ad action gives rise to the algebra of charges

(adx M, ) = —(M, adx?).
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Remarks

- there are a number of technical requirements for this to work out

« charges should be integrable and Hamiltonian

[Ciambelli, RGL 2104]
need extended phase space ideas bt S e

* In some cases there are central charges which may appear depending on
the nature of the moment map and equivariant lifting

(work in progress) [M. Klinger, P.C. Pai, RGL, Luca C.]

- all of this has a concise interpretation in terms of an Atiyah Lie
algebroid over the corner S

- here, the structure group is H = GL(2,R) x R?
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Lie Algebroid Primer

given a principal G-bundle = : P — M with a principal connection
- TP is a bundle over P, whereas A=TP/G is a vector bundle over M

* principal connection descends to a connection on the Lie algebroid A
neatly combines gauge transformations with diffeomorphisms

0O —L—A—>TM—20

» the connection defines a global split A = H & V with H corresponding
to diffs,and V an image of the Lie algebra bundle L

one can use such structure to describe gauge theories (gravity) on a
spacetime M (particularly useful in the context of subregions...)

here the role of M is played by a corner S,and G is GL(2, R) x R?
* the Lie algebra element X of full UCS is interpreted as a section of A

» dual of Lie algebra promoted to dual bundle A*
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Affine Structures

this is quite powerful, because other geometric structures can be
identified with associated bundles

- this is how representation theory then enters

* one can imagine a functional integral quantization as a gauge theory over
corners

('m hopeful that this is work in progress...)

an important example of a representation is a rank-2 affine bundle B
(o7, 92) = (67 (g5), Ry® ¥} + by°)
GL(2,R) R

a connection on this bundle is a pair (a,(-,ocz", ag};ab)

a section M € A* can be thought of as in Der(B)* ~ T*U & End(B)*
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Moment Maps

- moment maps relate a phase space to an orbit xs:x = A;
- here they exist by restricting to ECS and ACS
- e.g, for ECS, the invariant tensor € gives a map ¢ : End(B,)* — S°B;.

R (hm): )

- in fact, all of the pieces of a metric on a classical spacetime (decomposed
with respect to a corner) are present

= V—det KOhfSe,,  b=-Nb,aM2,,  py= 1IN (H), -

1
db,a hda).b)-

hgl) = % (h(l)

1
ab,c h( )b)
Hx = ps (/S vols [QQbNba A gjbj o bapa])

fﬁs(Nab) =J% P"s(pa) =P, U's(b:') = (91
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Incomplete Remarks on Quantum

the coadjoint orbit analysis for UCS is quite tractable, and can be
interpreted in terms of a Lie algebroid over a corner

associated representations contain the ingredients to build classical
geometries (in which corners are codimension-2)

can fit this into an interpretation of any diff-invariant classical theory

but can also imagine it is the starting point for a quantum theory...
+ the ultimate bulk reconstruction

+ a semi-classical spacetime as a “‘condensate of corners”

- alternatively, perhaps a simpler idea is to try to figure out what
corresponds to a unitary representation

* ‘canonical quantization’

» this e.g. would presumably map onto asymptotic quantization of linearized
gravity

Pirsa: 22100043
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Even More Incomplete Remarks

- when we fix structures, patterns emerge
» the fluid picture is an example
» Casimirs of SL(2, R) are rarely Casimirs of SL(2,R) x R?
we've seen that the corner charges are well-defined invariants

other examples include the volume of S (because | is a local invariant), as well
as integrated curvature invariants

these map onto what Laurent called enstrophies, etc.

- one of the appealing features of the corner program is the close
built-in relationship with entanglement, non-factorizability, and
perhaps even the information puzzle...
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