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Abstract: | will present an analysis of the Hamiltonian formulation of gauge theories on manifolds with corners in the particular, yet common, case
in which they admit an equivariant momentum map.

In the presence of corners, the momentum map splits into a part encoding "Cauchy data’ or constraints, and a part encoding the "flux" across the
corner. This decomposition plays an important role in the construction of the reduced phase space, which then becomes an application of symplectic
reduction in stages for local group actions.

The output of this analysis are natural "corner” Poisson structures, leading to the concept of (classical) flux superselection sectors as their symplectic
leaves.

Thisis based on a collaboration with A. Riello. My talk will cover the general framework of corner superselection, while Riello's talk will deal with
its application to null boundaries and soft charges.
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Overview of Part |
Joint work with A. Riello 2207.00568 - Part Il on Friday

Problem:
Describe reduced phase space for Hamiltonian gauge theories on
manifolds with corners
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Overview of Part |
Joint work with A. Riello 2207.00568 - Part Il on Friday

Problem:
Describe reduced phase space for Hamiltonian gauge theories on
manifolds with corners

® Hamiltonian reduction paradigm must be refined.

® Two stages: “constraint reduction” and “flux superselection” .

® Adjusted paradigm: reduced phase space is Poisson manifold
foliated by symplectic leaves (superselection sectors) labeled by the
coadjoint orbits of “fluxes” - a.k.a. corner charges.

Non-null Yang—Mills theory as running example.
Null YM will be presented by Aldo in Part II.
General Relativity is in progress.
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Quick recap of Hamiltonian reduction

Let (P,w, G, H) be a Hamiltonian G-space with equivariant momentum
map H: P — &*, i.e. for all { € & = Lie(9):

Lo(e)w = (dH, &) Hamiltonian flow condition

LyeH =ad¢H Equivariance

Note: d will always denote de Rham on P.

Conclusions

(@]
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CHERN-SIMONS THEORIES ON OPEN MANIFOLDS:
METRIC DEPENDENCE FROM BOUNDARY
CONDITIONS

PARTITION FUNCTIONS OF C-S ON OPEN MANIFOLDS
AS WAVE FUNCTIONS

AN EXPLICIT BASIS OF WAVE FUNCTION FOR ABELIAN
C-S

AN IMPLICIT BASIS OF PARTITION FUNCTIONS FOR
ABELIAN AND NONABELIAN C-S

RELATING THE BASES FOR HANDLEBODIES: 1) THE
INITIAL CONDITION

RELATING THE BASES: 2) RADIAL QUANTIZATION OF
C-S AS PROJECTION OVER GAUGE INVARIANT WAVE
FUNCTIONS
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Overview of Part |
Joint work with A. Riello 2207.00568 - Part Il on Friday

Problem:
Describe reduced phase space for Hamiltonian gauge theories on
manifolds with corners

® Hamiltonian reduction paradigm must be refined.

® Two stages: “constraint reduction” and “flux superselection”.
® Adjusted paradigm: reduced phase space is Poisson manifold

foliated by symplectic leaves (superselection sectors) labeled by the
coadjoint orbits of “fluxes” - a.k.a. corner charges.

Non-null Yang—Mills theory as running example.
Null YM will be presented by Aldo in Part II.
General Relativity is in progress.
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Quick recap of Hamiltonian reduction
Let (P,w, G, H) be a Hamiltonian G-space with equivariant momentum
map H: P — &*, i.e. for all £ € & = Lie(9):

toeyw = (dH, §) Hamiltonian flow condition
LeyH = adiH Equivariance

Note: d will always denote de Rham on .

Theorem (Marsden, Weinstein; Meyer; Arms)

For every coadjoint orbit O C &* we have a symplectic manifold:*

Moreover P /G is Poisson, and C[f] for all f € &* its symplectic leaves.

1\We need a free action for this to hold.
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Local Gauge Theory with Corners

Local Lagrangian field theory on ¥ x R. Assume JX # (). dim(X) = n
Hamiltonian formulation? yields (P,w, H, G) locally Hamiltonian G-space:

1. P =T(X, F) sections of a vector bundle (for simplicity),
2,top
loc

. H e QYP(P x ¥) a local functional (density) on P,

loc

- w e 22.°P(P x X) a local symplectic density on P,
. G a local lie group with a local action on P.

Flow and equivariance now hold pointwise: for £ € ® = Lie(9)

Lpeyw = (dH, &) local Hamiltonian form

Loe)H = adi H+dk(§) Equivariance up to corners

Note 1: Local pairing (dH,&): may depend on derivatives 9€.
~+ Generally not C°°(X)-linear!

Note 2: Integrate w = [ w and H = [; H.

~+ Equivariant Momentum map, up to corners (CE cocycle).

2Canonical approach, Kijowski-Tulczyjew, covariant... up to obstructions
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Running Example I: (Spacelike) Yang—Mills Theory

Consider G abelian or semisimple, with inner product tr: g x ¢ — R, and
look at G-connections A € A = Conn(P — X)) with X spacelike.
We have the geometric/canonical phase space:

& =Q"(1, 9), P=TYA=HAx%ES|(AE), w = tr(dAdE).
The gauge action of § = C5°(X, G) reads
(A, E, &) — p(§)(A E) = (dak,ad(§) - E), €& =C (L,g)
It is locally Hamiltonian with (equivariant) momentum map

kple)w = (dH, &), (H,&) = tr(EdaS).

Note: G semisimple: restrict to A € A irreducible.
~+ Denote 4 = {£ € & | da = 0}. Then 4 = 0.
G abelian: all A € A are reducible by constants £ € g <+ &.
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Reduction with corners is reduction in stages

Problem: H~'(0) is not the correct constraint locus!
Additional “corner conditions” imposed by H = 0 “kill the flux."”

Proposition (Constraint / Flux splitting [Riello, MS])
There is a natural bulk/boundary splitting:

H=H,+dh

with C = HZ(0) the constraint set of the theory.
We call H, the constraint form and h the flux form.

Note: H, is NOT a equivariant momentum map for § anymore!
€ is still coisotropic: the reduction € = C/C“ is symplectic (if smooth).
We call € the constraint-reduced phase space.

Question: Is there a subgroup G, for which C is zero level set of the
associated momentum map J,: P — &?, so that € = €/G,7
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First Stage: Constraint Reduction

Theorem (Constraint reduction [Riello MS])
Let he = 1 [s dh. Under certain regularity assumptions:
1. The subspace &, = AnnIm(he) C & is the maximal Lie ideal whose
associated momentum map J, is such that J,*(0) = C.
Normal subgroup S, C G: constraint gauge group.
Quotient group § = G/9,: flux gauge group
. Hamiltonian action G O € = C/G,, with momentum map

h: C — &, such that he = w*h.
We call h the flux map and § = Im(h) the flux space.

. Equivariance controlled by the Chevalley-Eilenberg cocycle
k = [ dk. [Recall: H was equivariant up to corner|

Comments:

Reduction € is not enough in the presence of corners.

Functions C*°(€) are NOT observables: residual gauge symmetry G O C.
Need second stage reduction!
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Reduction in Stages
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Yang—Mills II: Constraint/flux split

The Hamiltonian momentum map splits as:
H=H, + dh, (Ho,&) = tr(daEE), (dh,&) = —dtr(EYE),

and € = H;'(0) = {(A,E) € P | daE = 0}: Gauss’ Constraint.
Note: Imposing H = 0 forces E|gy = 0: zero flux.

Indeed (h,&) = [,s thstr(EE) is the (smeared) “electric” flux.

o

Denote £ € 4 <= daf = 0. The constraint gauge ideal &, reads:

{£ €6 | oz =0} G semisimple
{£€8|IxeBa:flor = xlox} G Abelian

&, = Ann(§) = {

and thus the flux gauge algebra & reads

C=(0%, 9] G semisimple

6=6/6,= _
e / {Cm(iﬂi,g)/g G Abelian
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Yang—Mills Ill: Constraint reduction

[Singer; Narasimhan, Ramadas; Gomes, Hopfmiiller, Riello...]

Radiative/Coulombic (Helmholz/Hodge) orthogonal decomposition:

E = Eyq + *do, with ¢ € C(X, g*) is the Coulombic potential
parametrised by Ey € &5 = Q'*P(JL, g):

n-dap = Ep at O%.

{AAcp =xdaE~0 inZ,

If H 4 denotes radiative electric fields (daEraq = 0 = (Erad)s):
Hax A
Coloe HaX AXEy = €oe —o—— x &g
e Ve EJC)
:Prad

For G Abelian, A = A.q + ds, with ¢ € C®°(ZX, g) solution of
Neumann-Laplace, one obtains C ~ Praq x T*® (globally!)

w2 / dEraq A dArag + / dEy A dey,
¥ O

with grad — Erad/g = (Arada Erad)-
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Second Stage: Flux Superselection

First stage reduction output: € symplectic.
Flux map h is a momentum map for § O C.

Consider the coadjoint orbit Of € &* of a flux f € F = Im(h) C &*.

All on-shell configurations whose flux is in Of are acted upon by §:*

Sn=h""(0f) ~ 8=8/9  Superselection sector (SSS)

Theorem (Flux Superselection [Riello, MS])

The fully-reduced phase space C = C/G = C/G is a Poisson manifold
whose symplectic leaves are the superselection sectors:

= | 8

fe®*

31gnoring multiple connected components. Note: this action is always free.
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Running Example IV: Flux Superselection
Radiative/Coulombic split leads to constraint reduction:

g = Erad X 85‘3 $rad = :Prad/go-

G acts (freely) on P,.4. Then € is a fibre bundle

0 e s * 0 i . Sy
C Moe € X 9 x I«Erad e A 8% :Erada Irad = :Prad/g

Note: Extended phase space (Donnelly—Freidel), without any extension!
Flux map h: Eg — [, tr(Ep-) identifies €5 ~ 8™ = C>(0X, g)*.

Looking at Sjf) = ﬁ_l((f)f), since O — &5 ~ B*

é[f] “loc Of X E X Emd = Eé) X S X Erad loc (;3_5
Clearly, then, we have a foliation: for every flux f € § = Im(h) ~ &*

S1f] o Of X Prad = €5 X Prad ioe C.
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Off-Shell Corner Data

Working on-shell is often times cumbersome. Induce off-shell corner data:

9. A=P x B = Ay =Py x Gy, Wy = <€Hh,ﬂ£>

We can recover on-shell data Cy = 75(C) C Py, and relate &, with &.

Theorem (Compatibility of Corner Data [Riello, MS])

Ay is a symplectic Lie algebroid; Cy — (Py,MMy) Poisson (sub)manifolds.
There exists a commuting diagram of Poisson manifolds

Noether Charge algebra ~+ Poisson structure (Cy, MNe,) — (Pa, MNay).
The Casimirs of Iy label superselections.
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Off-Shell Corner Data

Working on-shell is often times cumbersome. Induce off-shell corner data:
7T(9:A::PX@—>A8£:P3X@33 w3:<ah9a£>

We can recover on-shell data Cy = 75(C) C Py, and relate &y with &.

Theorem (Compatibility of Corner Data [Riello, MS])

Ay is a symplectic Lie algebroid; Cy < (P, My) Poisson (sub)manifolds.
There exists a commuting diagram of Poisson manifolds

N§M = fos tr (Es |55 55 ) Yang-Mills

I'ICS = Ia: tr ( [‘% ]) + tr ( d 51) Chern—Simons, w. central extension

Noether Charge algebra ~~ Poisson structure (Cy, Me,) < (Pa, MNy).
The Casimirs of My label superselections.
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Conclusions
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. C partial reduction - extended phase space with T*G.

. Full reduction: Poisson manifold with flux superselection leaves.

. Corner Noether charge algebra given by corner Poisson structure.

. Extension to Gravity in progress. Difficulties related to absence of
clear momentum map picture. We have ideas.

. Relation to soft charges/memory will be evident in Aldo's talk.
See also Kasia's talk, where flux map is given in BV-BFV language.
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Thanks!
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