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Abstract: This talk reviews the use of radial quantization to compute Chern-Simons partition functions on handlebodies of arbitrary genus. The
partition function is given by a particular transition amplitude between two states which are defined on the Riemann surfaces that define the
(singular) foliation of the handlebody. By requiring that the only singularities of the gauge field inside the handlebody must be compatible with
Wilson loop insertions, we find that the Wilson loop shifts the holonomy of the initial state. Together with an appropriate choice of normalization,
this procedure selects a unique state in the Hilbert space obtained from a Kéhler quantization of the theory on the constant-radius Riemann surfaces.
Radial quantization allows us to find the partition functions of Abelian Chern-Simons theories for handlebodies of arbitrary genus. For non-Abelian
compact gauge groups, we show that our method reproduces the known partition function and Wilson loop VEVs at genus one.
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CHERN-SIMONS THEORIES ON OPEN MANIFOLDS:
METRIC DEPENDENCE FROM BOUNDARY
CONDITIONS

PARTITION FUNCTIONS OF C-S ON OPEN MANIFOLDS
AS WAVE FUNCTIONS

AN EXPLICIT BASIS OF WAVE FUNCTION FOR ABELIAN
C-S

AN IMPLICIT BASIS OF PARTITION FUNCTIONS FOR
ABELIAN AND NONABELIAN C-S

RELATING THE BASES FOR HANDLEBODIES: I) THE
INITIAL CONDITION

RELATING THE BASES: 2) RADIAL QUANTIZATION OF
C-SAS PROJECTION OVER GAUGE INVARIANT WAVE
FUNCTIONS
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¢ WILSON LOOPS (AND THE FRAMING ANOMALY)

e THE PARTITION FUNCTION OF NON-ABELIAN C-S ON
A TORUS HANDLEBODY

¢ THE PARTITION FUNCTION OF NON-ABELIAN C-S
WITHWILSON LOOPS ON ATORUS HANDLEBODY
(AND A CONJECTURED MATHEMATICAL IDENTITY)
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THE ABELIAN CHERN-SIMONS BULK LAGRANGIAN

1 —/ AdA
M

A = Abelian connection on M

THEACTION ISTOPOLOGICAL BUT A DEPENDENCE ON
NON-TOPOLOGICAL DATA IS INTRODUCED BY THE
BOUNDARY TERM

Ig = / d°zA,A; , Y =M

TO DEFINE THE BOUNDARY TERMWE MUST INTRODUCE
A COMPLEX STRUCTURE (z AND z*)

Page 5/27



Pirsa: 22100040

THE FUNCTIONAL INTEGRAL

I k k
IA ' X _71 + 7/ 3
./.4;|.\,-_.4[’ ]‘“‘"( 4 T o b)

DEFINES AWAVE FUNCTION IN HOLOMORPHIC
QUANTIZATION

GAUGE-INVARIANT SCALAR PRODUCT

(P,V) = /.[d/lJ‘l‘*(z’l)‘l’(/l)(‘xp ( A.fu)

m

GAUGE TRANSFORMATION
k

27

/ 12 2(ONON 2('),\/1)) W(A ~ ON)
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FOR ABELIAN C-S AN EXPLICIT BASIS OF WAVE
FUNCTIONS IS KNOWN (BOSAND NAIR 1990)

Ly " ,n" I\' l " Y.
U(A, 1, Q)= F(2) "?exp _)n w(Im$2) w4 > /d‘ -.r(')\i)\‘ﬂl /’(/), ‘(F;u.kﬂ)

- -

pezi, ke, A=) u'a'+dx
/
det’ A
Im det €2

= |1"(Q)|2 exp(—S)

Zograf-Takhtajan 1988, Quillen 1985
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FOR ABELIAN C-S AN EXPLICIT BASIS OF WAVE
FUNCTIONS IS KNOWN (BOSAND NAIR 1990)

- " K k
(A, ) = F(Q) exp | u(m®) ut

- -

/ d’ Oy Oy HI “(/)A- ‘(F;u.kﬂ)

pezi, ke, A=) Ja'+dx
/
det’ A
Im det €2

= |1"(Q)|2 exp(—9)

Zograf-Takhtajan 1988, Quillen 1985

WHICH LINEAR COMBINATION OF THESE BASIS
VECTORS IS THE PARTITION FUNCTION?
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WE KNOW THE ANSWER IMPLICITLY IN ANOTHER BASIS
(WITTEN 1989)

<<\ v’> <~::;'f- = \

——

/Mg;DL HAL/D(J@OPT

_p— — e I

——

WILSON LOOP GENERATE A COMPLETE BASIS OF WAVE
FUNCTIONS FOR COMPACT ABELIAN CS BY THE STATE
OPERATOR CORRESPONDENCE
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WILSON LOOPS GENERATE A COMPLETE SET OF WAVE
FUNCTIONS ON THE RIEMANN SURFACE BY THE STATE-
OPERATOR CORRESPONDENCE

3 ] N
T /i' ’i'
Z[A|p) / [dA] | | exp (1/:’ % A) CxXp ( i—1I 4 f—f;;) . pE Zl
JAg|si=A Il‘ll o l;T .ZTT A

HOW ARE THESE WAVE FUNCTIONS RELATED TO THE
EXPLICIT BOS-NAIR BASIS?

BOS-NAIR IS HOLOMORPHIC IN THE GAUGE
CONNECTION

IT ISALSO HOLOMORPHIC IN THE COMPLEX
STRUCTURE
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WE COULD TRY TO DECOMPOSE THE HANDLEBODY
INTO AN N-HOLED SPHERE AND N SOLID CYLINDERS
(HANDLES)

. . GLUE TO HOLED SPHERE

BUT THE CORNERS IN THE CYLINDER AND IN THE
HOLED SPHERE INTRODUCE EXTRA DEGREES OF
FREEDOM THAT WE WERE NOT ABLE TO ACCOUNT
CORRECTLY
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THE CORRECT ANSWER IS SUGGESTED BY THE STATE-
OPERATOR CORRESPONDENCE CONSTRUCTION

FOLIATE THE HANDLEBODY AS

M=% x[0,R]

USE RADIAL QUANTIZATION
Z = (Ag — Al(‘X])(—RIIH\I}())

TOWIT: WRITETHE FUNCTIONAL INTEGRAL AS A
KERNEL BETWEEN AN APPROPRIATE INITIAL STATE AND
A COHERENT FINAL STATE OF THE EVOLUTION UNDER

THE RADIAL HAMILTONIAN H

WE NEED TO FIND THE APPROPRIATE INITIAL STATEAND H
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CASE A): NO WILSON LOQOP

THE FOLIATION DEGENERATES AT R=0 BUT THE MANIFOLD M
IS REGULAR EVERYWHERE

THIS IMPOSES A STRONG CONDITION ON THE INITIAL STATE

handle of handlebody

STREBEL DIFFERENTIAL h: MEROMORPHIC, CLOSED.
ITS HORIZONTAL TRAJECTORIES COVER A SET OF
CODIMENSION ZERO

HORIZONTAL TRAJECTORY IS GIVEN BY
dz
dt

2
) 1s real and positive

for trajectory z(t), h (
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THE STREBEL DIFFERENTIAL DEFINES A FLAT METRIC g AND
A 2-VALUED VECTOR FIELD v

| |
g=Vhh, v=-—70,4+—0;:
. VY-

dz/dl = fv, [ = real function

THE COMPONENTS OF THEVECTOR FIELD v MAY HAVE
BRANCH CUTS BUT THEY CANCEL IN THE RATIO v*/v

THE HORIZONTAL TRAJECTORIES OF THE STREBEL

DIFFERENTIAL CAN BE CHOSEN TO BE HOMOLOGOUS TO
HOMOLOGY CYCLES OF THE RIEMANN SURFACE THAT
FOLIATES THE MANIFOLD M WHICHARE CONTRACTIBLE IN ™M

homologous to a
horizontal trajectory of
the Strebel differential
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SINCE THE HANDLEBODY IS NOT SINGULAR AT r=0 WHERE
THE FOLIATION DEGENERATES, THE INITIAL STATE MUST BE
SUCH THAT THE GAUGE FIELD VANISHES ALONG THEVECTOR
v THAT GENERATES THE CONTRACTIBLE CYCLE.

: T 0
(VA; 4 '?"A:.)“I’U) = (), A: = k0A:

THE INITIAL STATE OBEYING THIS CONDITION IS A
SQUEEZED STATE

Iif . P Y
(A:|Wq) = exp ( / d‘z.r{—/lﬁ)
27 J  # S

THIS STATE DOES NOT OBEY THE GAUSS LAWY, BUT ITS
RADIAL EVOLUTION DOES THANKS TO THE R
INDEPENDENT IDENTITY

}l:’(z,\](A: U(N)|Wo) = (As| exp(—RH)|Wo)
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SO RADIAL EVOLUTION PROJECTS OVER GAUGE
INVARIANT STATES.WE CAN THEREFORE USE OUR NON
GAUGE INVARIANT INITIAL STATE AS A“SEED” THAT
GENERATES THE WAVE FUNCTION CORRESPONDING TO
THEVACUUM PARTITION FUNCTION.

THE INTEGRAL OVER GAUGE ORBITS CAN BE DONE
EXPLICITLY BECAUSE IS QUADRATIC

I A I\' I 9 v \ 2
gz dA|(Az|U(A) W) )y/ [J,\_vhp(-rj BPa2(0N+ DA+ (ON+ 0)(ON + 0) + t-(‘l-e-r'),\-e-()}‘)
m v

-/

large gauge transformation

THE NONTRIVIAL PART OF THE GAUSSIAN INTEGRAL IS
THE EQUATION FOR THE SADDLE POINT BECAUSE IT
APPEARS TO DEPEND ON THE METRIC AND ALSO ON

THE CHOICE OF THEVECTOR v
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THE SADDLE POINT EQUATION IS
DON+ DA+ OZ(ON+6 + A) =0
vV

DECOMPOSE GAUGE FIELD IN EXACT + HARMONIC PART
A=0x+86
SIMPLE MANIPULATIONS TRANSFORM THE SADDLE
POINT EQUATION INTO

(A + x) + 0@+ O) + v(f + ©) = holomorphic [unction, &, = vd + v

INTEGRATING THIS EQUATION OVER A CONTRACTIBLE
CYCLE AND NOTICING THAT THE INTEGRAL OF THE
EXACT PART VANISHES WE GET

MmN+ x) =00 +6O) - v + O)
0+0=Uwx" 0+06=U
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THE SADDLE POINT EQUATION IS
DO\ + A+ OZ(ON+6 + A) =0
vV

DECOMPOSE GAUGE FIELD IN EXACT + HARMONIC PART
A=0x+6
SIMPLE MANIPULATIONS TRANSFORM THE SADDLE
POINT EQUATION INTO

(A + x) + 0@+ O) + v(f + ) = holomorphic [unction, &, = vd + v

INTEGRATING THIS EQUATION OVER A CONTRACTIBLE
CYCLE AND NOTICING THAT THE INTEGRAL OF THE
EXACT PART VANISHES WE GET

MmN+ x) =00+ 0O) - (0 + O)
0+0=Ua" 6+06=Uu
SUBSTITUTE INTO ACTION AND FIND A PLEASANT SURPRISE
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ALLTERMS CONTAINING THE HARMONIC PART OF THE
GAUGE CONNECTION DEPEND NEITHER ON THE METRIC g
NOR ON v

THE QUADRATIC FLUCTUATIONS AROUND THE
SADDLE POINT ARE EASILY EVALUATED AND THE FINAL
RESULT IS (AFTER DISCARDING AN INFINITE SUM OVER

IDENTICAL GAUGE COPIES)

. k k [
(A|exp(=RH)|Wo) = F(52)~"/% exp _)rru.(]mSl) 'u+ 3 /d‘.‘r:’)\r')\](){?l}(l.‘u.lru)

& nJe

THIS IS THE BOS-NAIR WAVE FUNCTION FOR # = ()
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CASE B): WILSON LOOP INSERTION

WE START BY DEFINING AWILSON LOOP “SPREAD OUT"
OVER THE RIEMANN SURFACE

exp (i/:, f /\) = exp (/ d*x(wA; + m/\:)) = WI[E, w]
JC J3

THE HARMONIC PART w' OF THEVECTOR FIELD w MUST
OBEY THE FOLLOWING CONDITIONS TO ENSURE

GAUGE INVARIANCE UNDER SMALL AND LARGE GAUGE
TRANSFORMATIONS

w'=(MmQ)~ Y Qu+N)a  u,NeZf
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THE INITIAL STATEWITHWILSON LOOP INSERTION IS

t

» 2 4 f } 7l . 1
W |E. t(’||‘I’n) = |‘I’()) CXP ( l / (I'!;t' w |iu.' U_!J Az 4 Y / ([']‘.t'u.-‘ l:w tt'])
. 1 ZN Jy ()

5

LU =

INSERT THIS INITIAL STATE INTO THE INTEGRAL OVER
GAUGE ORBITS TO GET THE PARTITION FUNCTION
WITHWILSON LOOP INSERTION

/3 ¥ - ¥ . 7 L~ ; A
(Alexp( RHYW|E, u]|Wo) = F(2) 2 exp V_—:ru(lmu} 'u )L / d*xdydy | :.Alp,-'\'J 0{ :." | (ku, kS?)
& FY(EN A 1

this phase has an interesting
interpretation

WRITE THE WILSON LOOPWITH VECTOR w AS THE PRODUCT
W, w] = W[, w,]W[S, wn] exp ( } izuN)

w, = Of + (Im) "Quw  wy =dg + (ImN) 'Nw
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THE FACTORS IN THE PRODUCT HAVE A NATURAL
INTERPRETATION

W3, w,] = blowup of Wilson loop along noncontractible cycle
W%, wx| = blowup of Wilson loop along contractible cycle

THE WILSON LOOP ALONG THE CONTRACTIBLE CYCLE
VANISHES ON THE INITIAL STATE

WIS, wll o) = WIS, w WIS wn] exp (+i 74N ) [Wo) = WIS, wlexp (+i 71N o)

this phase is the only effect of inserting a Wilson loop winding N
times along the contractible cycles of the handlebody

WHEN
N=uN', N Ee€Z

THE PHASE IS THEWELL KNOWN FRAMING ANOMALY
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NONABELIAN C-S ON THE TORUS

CHOOSE AS INITIAL BOUNDARY CONDITION AT r=0

Ay |
| € — C C, C = Cartan subalgebra
W kA, 5

Weyl alcove (undilated)

CHOOSE AS FINAL BOUNDARY CONDITIONAT r=R

U

/

u € C, C = Cartan subalgebra
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THE TRANSITION AMPLITUDE BETWEEN THE STATES
Y S
o ) = 2 i slu) = U
Al ) rrk|/1) A:lu) zl“”_]u)
IS GIVEN BY THE FUNCTIONAL INTEGRAL
(u| exp(—=RH)|pu) = /[(Ul](ﬂl"._.,] exp (i1)

IT IS COMPUTED BY USING FOLLOWING DECOMPOSITION
THE GAUGE FIELD ON THE 2-TORUS

A=gqg '(d+a)g ged a€C
THE ACTION REDUCES TO THAT OF A CHIRAL WESS-

ZUMINO MODEL AND THE INTEGRAL OVER g GIVES
(PERROT 1991)

7wk
(u| exp(—RH)|p) = exp (_ T

2Im T

X k(u, 7) = Weyl-Kac character
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ONTHE OTHER HAND THE WILSON LOOP FIXES THE
HOLONOMY ALONG THE CONTRACTIBLE CYCLE

7 ‘/

THE EQUALITY OF THE TWO FORMULAS IMPLIES AN
IDENTITY AMONG WEYL CHARACTERS THAT WE COULD
ONLY PROVE BY BRUTE FORCE FOR G=5U(2) ONLY

Z Xv = ,\";f

el
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SUMMARY

THE PATH INTEGRAL OF ABELIAN C-S THEORY ON
HANDLEBODIES CAN BE COMPUTED EXPLICITLY BY
RADIAL QUANTIZATION

RADIAL EVOLUTION FROM AN INITIAL STATE
PROJECTS OVER GAUGE INVARIANT WAVE
FUNCTIONS

THE INITIALWAVE FUNCTION IS FIXED BY REQUIRING
THAT THE GAUGE FIELD ALONG CONTRACTIBLE
HOLONOMY CYCLES IS DETERMINED BY THE WILSON
LOOP

PARTITION FUNCTIONS OF NONABELIAN C-S
THEORIES ON TORUS HANDLEBODIES CAN BE
COMPUTED BY METHODS SIMILAR TO THOSE USED IN
THE ABELIAN CASE
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SUMMARY

e FOR NONABELIAN C-S ON TORUS HANDLEBODIES,
WE FOUND THAT THE VALIDITY OF THE RADIAL
QUANTIZATION METHOD REQUIRES A CURIOUS
IDENTITY AMONG WEYL CHARACTERS THAT WE
COULD PROVE ONLY FOR SU(2)
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