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Abstract: In this introductory talk, |1 will present a new perspective about quantum gravity which is rooted deeply in a renewed understanding of
local symmetriesin Gravity that appears when we decompose gravitational systems into subsystems.

| will emphasize the central role of the corner symmetry group in capturing all the necessary data needed to glue back seamlessly quantum
spacetime regions. | will present how the charge conservation associated with these symmetries encoded the dynamics of null surfaces.

Finally, I will also present how the representation theory of the corner symmetry arises and provides a representation of quantum geometry, and |
will show that deformations of this symmetry can be the explanation for a fundamental planckian cut-off.

| will also mention how these symmetry groups reduce to asymptotic symmetry groups and control asymptotic gravitational dynamics when the
entangling sphere is moved to infinity. If time permits, | will explain how these symmetries control asymptotic gravitational dynamics. And | will
describe how they provide a new picture of the nature of quantum radiation.

Overall, this new paradigm allows to connect semi-classical gravitational physics, S-matrix theory, and non-perturbative quantum gravity
techniques.

Thetalk's goal isto give an overall flavor of how these connections appear from an elementary understanding of symmetries.

Pirsa: 22100036 Page 1/29



Local Holography and corner symmetry:
A paradigm for quantum gravity
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QG Questions

* What are the fundamental QG degrees of freedom?
* What is the geometrical entropy counting?
* What are the fundamental observables?

* Can we provide a model of quantum gravity that respect the presence of a
Planckian cutoff and the principle of general covariance

* Local Holography: A perspective which comes from

* Asking new fundamental questions :

* How do we decompose a gravitational sytems into subsystems?
* What is the nature of entanglement across subregions ?
* What are the symmetries of gravity ?

* Developing new tools: Covariant phase space, Coadjoint orbits
Representation theory of sphere loop groups
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Local Holography

* An approach that reconciles teachings from, Holography, Loop gravity, perturbative
S-matrix and the membrane paradigm.

* Holography: The emergence of classically connected spacetimes is related to the quantum
entanglement of quantum gravity degrees of freedom. The area of the connecting region is
proportional to the entanglement entropy and this can be represented in terms of tensor
networks

* Loop-Gravity: The fundamental QG degrees of freedom carry area quanta and appears as
representation states of internal gauge symmetry. The entangling is represented in terms of

spin networks

« S-Matrix: The gravitational scattering process satisfy an infinite number of conservation laws
embodied into a hierarchy of soft theorems

* Membrane paradigm: The gravitational dynamic projected onto near null surfaces is
isomorphic to the conservation laws of Carrollian fluids dynamics
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Local Holography

* An approach that reconciles teachings from, Holography, Loop gravity, perturbative S-
matrix and the membrane paradigm.

* Holography: The emergence of classically connected spacetimes is related to the quantum
entanglement of quantum gravity degrees of freedom.The area of the connecting region is
proportional to the entanglement entropy and this can be represented in terms of tensor
networks

* Loop-Gravity: The fundamental QG degrees of freedom carry area quanta and appears as
representation states of internal gauge symmetry.The entangling is represented in terms of
spin networks

« S-Matrix: The gravitational scattering process satisfy an infinite number of conservation laws
embodied into a hierarchy of soft theorems

* Membrane paradigm: The gravitational dynamic projected onto near null surfaces is
isomorphic to the conservation laws of Carrollian fluids dynamics

* The existence of corner symmetry explains the gravitational entanglement,
area quantization, soft theorems and fluid dynamics.
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Plan

* Space Entanglement and Corner symmetry
* Corner symmetry representations and consequences
* Dynamics, charge conservation and Carrollian fluids

L3

* Asymptotic quantization, Higher spin charges and Radiation

Pirsa: 22100036 Page 6/29



Gauge symmetry resolves entanglement

( 2 .q;.w ‘/)XP‘

* The basic set-up is to decompose a slice of spacetime into a collection of
regions and understand what data is necessary to glue them back.

2=

T

* Quantum states are fundamentally entangled across the boundary S of two subregions:
What is the nature of this entanglement ?
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Gauge symmetry resolves entanglement

( by g;.w Y X #

* The basic set-up is to decompose a slice of spacetime into a collection of
regions and understand what data is necessary to glue them back.

2= L

T

* Quantum states are fundamentally entangled across the boundary S of two subregions:
What is the nature of this entanglement ?

« If there exists a symmetry Q = O, + (O whose action vanishes on the state |¥) € #'y 5
We'can use it to decompose the state into its symmetry resolved components

%)= D 1¥@) 0.1'¥@) =q|¥(@)
q

* This lowers entanglement. example: vaccua states and boost symmetry

Unruh decomposition [0) = Z e ™|0,n) where |0,n) = |n) @ |n*) is pure and n is

the boost weigh n
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Gauge symmetry resolves entanglement

* In gauge theory and gravity there exists an infinite set of symmetry
charges are supported on codimension 2 corners.

* These charges form the corner symmetry algebra g v

* The gauge principle implies that the action of the total charge Q = Q; + Qg
vanishes on physical states even if the individual action of Q;, doesn't.

= ) |¥Y®) 01 ¥(R)) = — Ok | ¥(R))

x ReirrepCr(gy)

* The Hilbert space doesn’t factorizes. Instead states have to be decomposed in terms
of unitary representations of the corner symmetry algebra

X = @R %L(R) gGS %R(R) Donnelly, F’16

» What algebra? For QCD g = ¢° is a loop group.

* For gravity it is expression of local diffeo on the sphere and local boost symmetry on S
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Noether theorems for local symmetry

* Global symmetries are associated with currents integrated on codimension one slices ),

Qg(z) = [ Jg
z

* For local symmetries the Noether current is trivially conserved: This means that
there is a Constraints such that d(J; — C;) = 0, which implies that Q(%) = 0 if 0X =0

« However this also means that Q:(2) = Qx(2;) + Qs(Xg) where the charges Q,(%,) are

non vanishing and entirely supported by its boundary § = 0%

Q(2) =] C:+ | g
> S

f \

Constraints Charge aspect

Pirsa: 22100036 Page 10/29



Noether theorems for local symmetry

* Global symmetries are associated with currents integrated on codimension one slices };

Qg(z) = [ Jg
z

* For local symmetries the Noether current is trivially conserved: This means that
there is a Constraints such that d(J; — C;) = 0, which implies that Q(%) = 0 if 0X =0

* However this also means that Q,(X) = Qx(X;) + Qs(Xg) where the charges Q,(%,) are

non vanishing and entirely supported by its boundary § = 0%

Qg(ZL) = e = Qg;(S)

S Extended Corner symmetry group GS
* What distinguishes gauge from symmetry is the non zero value of the corner charges.

* Their presence creates a resolution of the quantum entanglement of geometry:
One trades the non-locality of entanglement with the one of gauge symmetry
10
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Charge and Flux

~ ; : L Ashtekar Streubel '8
Dynamical symmetries carry Flux i §Q = 5Q§ + F £ Wald, Zoupas’ 00
Barnich Troesseart ' 10
Canonical variation = Noether + Flux Pasterski, Strominger, Zhib 18

Ladha, Campiglia’1 8
* Local conservation Law: Flux balance Q = Q + F ol :
65’ 6 — [f,f] Ié: f Pranzetti, Oliveri, Speiale,LF 21|

Ciambelli, Leigh "2
Evolution = Rotation + dissipation Wieland22

« The charges splits into kinematical charges #, = 0 and dynamical charges.
* The kinematical charges are canonical bracket that form a quantizable algebra:

Corner symmetry group f; 1Q:, O] =10,
' Xy X

* The Dynamical charges form an extended corner symmetry group Gy also quantizable in a

extended phase space Ciambelli, Leigh "2
LF21
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Charge and Flux

. : Ashtekar S bel 81
* Dynamical symmetries carry Flux I gg = 5Q £ -+ 5 £ svézl da%otggss.eoo
_ ' Barnich Troesseart’10
Canonical variation = Noether + Flux Pasterski, Strominger, Zhib ' 18
. : Ladha, Campiglia ’18
* Local conservation Law: Flux balance Sﬁng — Q[g f‘] + Iggf Pranzetti, Oliveri, Speiale,LF 2|
? Ciambelli, Leigh 21|
Evolution = Rotation + dissipation Wieland’22

« The charges splits into kinematical charges #, = 0 and dynamical charges.
* The kinematical charges are canonical bracket that form a quantizable algebra:

Corner symmetry group f; [QJ,’ Q1= iQ[§ ]
' Xy X

* The Dynamical charges form an extended corner symmetry group Gy also quantizable in a

extended phase space
* The Charges represents the non-commutative geometry
— Non-commutativity of the corner metric components

* At the quantum level physical observables form representations of Hg C Gy

—> Quantising Hg, Gg = Quantizing geometry.
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Symmetries and Gravity

* Given a region R with slice X the symmetry charges are supported on .
codimension 2 corners S= entangling sphere S

* The extended corner symmetry group Gy is the subgroup of Diff(M) which
and possesses non zero Noether charges in the presence of S, its with
kinematical subgroup Hg C Gg preserves the region R.

* In metric gravity GS = (Diff(S) X SL(Z,R)S) X R2S

W. Donnelly, L.F 2016
Group = Kinematical + dynamical L.F, Leigh, Ciambelli’ 2|

Pirsa: 22100036 Page 14/29



Symmetries and Gravity

* Given a region R with slice X the symmetry charges are supported on .
codimension 2 corners S= entangling sphere S

* The extended corner symmetry group Gy is the subgroup of Diff(M) which
and possesses non zero Noether charges in the presence of S, its with
kinematical subgroup Hg C Gg preserves the region R.

* In metric gravity GS = (Diff(S) X SL(Z,R)S) X R2S

W. Donnelly, L.F 2016
\ Group = Kinematical + dynamical L.F, Leigh, Ciambelli’ 2|

* Double Universality of G¢ for metric gravity!
-Same group for infinitesimal diamond or very large ones
-Same group for Einstein gravity or any other higher derivative formulation
of gravity no matter how many extra derivative

Wald, Speranza’l 7

What changes is either the choice of representation or the canonical representation of
the symmetry generators
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Extended corner symmetry group
e In metric gravity the group is Gg = (Diff(S) X SL(2, R)S) x RS

* Given a surface § embedded in space time the tangent bundle can be
decomposed in tangential components with coordinates 6* and normal
component with coordinates x' = (¢,r): S = {x' = 0}

* The extended corner symmetry algebra is generated by vector fields

' i fe—

: super-Lorentz super-boost
super-translation

diff(S) Weyl

¢ Metric | ds? = hyydx'da? + gap(de? — Vi'dz")(de? — VP da?)
I |

normal metric tangential metric Normal lapse

 Canonical diffeo aspect Py = CIAB(aole — 01 VQB =+ [Vba Vl]ﬁe) Twist| -form
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Extended corner symmetry group
e In metric gravity the group is Gg = (Diff(S) x SL(2, R)S) x RS

* Given a surface § embedded in space time the tangent bundle can be
decomposed in tangential components with coordinates 6* and normal
component with coordinates x' = (¢,r): S = {x' = 0}

* The extended corner symmetry algebra is generated by vector fields

' ! f—

: super-Lorentz super-boost
super-translation

diff(S) Weyl

* Metric | ds? = hyydx'da? + gap(de? — V.'dz")(do? — VP da?)
I |

normal metric tangential metric Normal lapse

» Canonical Boost aspect NJI — ejkhkl normal metric
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Diffferent Corner symmetry

 For a different formulation of gravity we have Ly = Lpy + d€ ppy LF, Geiller, Pranzetti 20

Qp = Qpy +dQppy

» Different formulation have different symmetry groups — Inequivalent quantization

Gs = (Diff(S) X Ks) X R o

Perez, LF‘I5
\ {948(0), gcp(6) } = ¥(€xcqpp + “')5(2)(0', o)

Einstein-Hilbert Ky = SL(2,R) i
Einstein-Cartan-Holst K, = SL(Z,C)ﬁ X SL(Z,R)ﬁ <+— Tangential metric 45

Electric Flux

o Inall cases we have that y/Casimir,(K) o \/a Area form! Loop gravity input

e SU(2)" is a subgroup of Hs
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Quantum Corner symmetry

Ty S Donnelly, Moosavian,
H = Diff(S) X SL(2,R) Ll

* What are the reps? what are the Casimirs?

* The little group is the group that preserves Csier), = det(q) >0

» Representations are classified by representations of the area preserving
Diffeomorphism subgroup: Coadjoint orbits

* The outer curvature generator {) form a representation of the area preserving

diffeomorphisms algebra

1
) — EAB [8APB e §6abcaANa8}3NbNC

e The Casimirs are then given by
Co = Area

B 9 C;7 = NUT charge
Cn —_— / \/a Q Cy = Fluid enstrophy
S
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Quantum fluid

Hg is isomorphic to the symmetry groups of 2d hydrodynamics W.Donnelly,A. Speranza, FM
Moosavian, L.F 2020

e Analogy: the area density \/a plays the role of the fluid density p
The outer curvature Q plays the role of the fluid vorticity w

e The quantum representations are classified by a choice of Arnold’'66; Marsden, Ratiu’35
area and vorticity densities (p, w) on S.
* (p,w) can be related to labels of the coadjoint orbits (hence

Khesin’| 7

representation) of the “fluid group’ Hy

L3

e Classical fluid corresponds to a choice of density density measure p > 0 which is absolutely
continuous with respect to the lebesgue measure

¢ Quantum fluid corresponds to a choice where both p and w are counting measures.
This gives a constituent picture to the fluid
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W. Donnelly,A. Speranza, FM

Quantum ﬂ UId Moosavian, L.F 2020

Hg is isomorphic to the symmetry groups of 2d hydrodynamics Abhold Masedan Ratlt

e Analogy: the area density \/a plays the role of the fluid density p
The outer curvature Q plays the role of the fluid vorticity w

* This provides a constituent picture where M. Geiller- D. Pranzetti. LF 202 |

Vortex quantization = Momenta quantization

Fluid molecularization = Area constituent i 2
= zpi‘S( (CAD
i

* Each tonstituent carries a density, weight and spin (p;, A, 5,)

P, = Z 8@(6,0)D, + (A58 + 56420500, 5) .

e Area constituent in the continuum from quantization!

» Einstein Cartan gravity with an Immirzi parameter implies that p; = y4/j.(j; + 1). Wieland ‘19
Area gap in the continuum!
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W. Donnelly,A. Speranza, FM

Quantum ﬂ UId Moosavian, L.F 2020

Hg is isomorphic to the symmetry groups of 2d hydrodynamics Al Mart o, Bt
e Analogy: the area density \/5 plays the role of the fluid density p
The outer curvature plays the role of the fluid vorticity w

* This provides a constituent picture where M. Geiller: D. Pranzetti. LF 202 |

Fluid molecularization = Area constituent o 2

e . P = Pié( )(0', 0}‘)

Vortex quantization = momenta quantization .
1

» Each tonstituent carries a density, weight and spin (p;, A, 5,)

P, = Z 8@(6,0)D, + (A58 + 56420500, 5) _—

e Area constituent in the continuum from quantization!

* The area preserving diffefomorphisms arises as the large N limit of SU(N) Speranza’s talk

— Matrix model deformation of Gravity and its symmetry.
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Dynamics along null surfaces

* In recent years there has been a tremendous effort and renewed understanding using
symmetries of gravitational dynamics and Flux along null horizons including null infinity

Ashtekar, Adami, Barnich, Ciambelli, Compere, Chandrasekaran, Donnay, Flanagan, Freidel,
Grumiller, Hopfmueller, Gobadazar, Marteau, Oliveri, Petropoulos, Perry, Ruzziconi, Sheikh- 1t
Jabbari, Speranza, Speziale, Troesseart, Zwikel, Wieland,...

—> Two main results for finite and asymptotic null surfaces outside caustics:
* The Einstein dynamics along null surfaces is encoded in the evolution
Equation of a Carrolllian fluid: ¢ — 0, ultra-local limit of a relativistic fluid.
* This dynamics can be understood as the conservation of charges for a universal
symmetry group called BMSW naturally derived from GS

* The Gravitational dynamics projected on ./ can be recast as a set of

Null conservation Laws DbTab\= 0 Donnay, Marteau ’19

i LF, Hopfmueller; 1 9; Sheikh-Jabbari’20

: : Carrollian energy-
Carrollian connection &Y Speranza, Flanagan, Chandrasekaran 2|
momentum tensor
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Symmetry on null surfaces

> Local gravitational symmetries are attached to codimension 2 corner: In
metric gravity this group is the extended corner symmetry group (Universal)

Gs = (Diff(S) x SL(2,R)”) x R*

» When we study Horizon, asymptotic infinity or the nature of quantum radiation
one focuses our attention onto a specific null surface. In that case the subgroup

preserving the preserving the null structure ( Thermal Carrollian structure) is
Barnich-Trossaert’10,

- S Chandrasekar, Flanagan, Prabhu’ |8
BMSW - (DlH(S) X Weyl) X R LF, Oliveri, Pranzetti Speziale 21

§=T0, + Y204 + W (ub, — r6,) >

> At infinity, same group, conservation law are associated with GBMS 1, _ 1 ilad
2

Barnich Troesseart | | Campiglia, Ladha ’16
Compere, Fiorucci, Ruzziconi’ | 8
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Carrollian Fluid
Levy-Leblond, Perry

- - - - - - . . -
A Carrollian Fluid is defined as the ultra-local limit ¢ = 0 of a relativistic fluid.
Donnay, Marteau,
Ciambelli, Leigh, Petropoulos

A Carrollian structure (p,¢“, q,) ona surface // is a bundle structure
p: (N, C) = (8,95 where gisametricon §and 7 is a vector in the kernel of dp \f =d,

the pull-back g = p*(gs) defines a null metric on A/ k=0,
An Ehresman connection on A is a form k dual to £, 7%, =1 /V

The embedding of /' in M determines a rigged connection D, preserving (¢, q)

Mars, Senovilla

D, is characterised by a choice of twist form @, = k,D,¢ b and choice of shear 0, = q,%q,’D oK
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Carrollian Fluid
Levy-Leblond, Perry

A Carrollian Fluid is defined as the ultra-local limit ¢ = 0 of a relativistic fluid.
Donnay, Marteau,
Ciambelli, Leigh, Petropoulos

A Carrollian structure (p,?“q,) ona surface / is a bundle structure
w: (N, C)— (S,q5) where gisametric on S and 7 is a vector in the kernel of dp \r,” =9,

the pull-back g = p*(gs) defines a null metric on A k:d/
An Ehresman connection on A4 is a form k dual to 7, 7%, = 1 -/V
The embedding of /' in M determines a rigged connection D, preserving (¢, q) Mars, Senovilla

D, is characterised by a choice of twist form @, = k,D, £ and choice of shear 6, = q,%°q,’D oK

There is an energy-momentum tensor TP =—k(EC?+J°) + 6 + (.2 + Pg,?)

* The Gravitational dynamics G,, = 0 projected on ./ can be J4=0
recast as a set of Null conservation Laws D,T.? = 0 where w, =1, — (P+%E) k,

LF, Hopfmueller ’18, Sheikh-Jabbari "20 —
T =L
Speranza, Flanagan, Chandrasekaran ‘2| ab #4ab

* These laws are the conservation of a subset BMSVV charges along /'

* The conservation of Weyl Charges provides the missing Einsteins equation G LF Jai-akson 22
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Asymptotic infinity

* In flat space asymptotic the corner is placed at g
« The asymptotic symmetry is GBMS = Diff(S) X R® 1

: P : Ruzziconi, Fiorucci’l9 e
[ ] ]
The asymptotic dynamic is Carrolllian Pl Cabelion

Donnay, Ruzziconi' 22
* In pure gravity we can assume that the corner symmetry

charges vanish at .. If Matter is present we assume that
— HHard
Qp(11) = Q¢ matter)

* This assumption and the conservation law implies that the
charges can be written in terms of the radiative data at ¢

0:(15) = [ £%9,(Cpp) — Quanum operatoron 5 [Cyplu 2. CPW. 2] = ixblu — )3V, 2)
r
« Soft theorems are conservation laws Q6(10+ ) = Ox1g)

* Recent analysis have shown that besides (M, P,) higher Ana’s talk
spin symmetry are presents with charges Tz, Fapc, -
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Lesson from oo

* Asymptotic infinity also carry the structure of an asympotic fluid: Two generator of symmetry the

mass aspect and angular momenta aspect. GBMS =D 1ff( S) X RS
7 -1

» Asymptotic infinity also carry the structure of an asympotic fluid: Two generators of symmetry
the mass aspect M and angular momenta aspect P, .

* Diff(S) rep are labelled by dimension and spin (A, *+ 2) with angular momenta aspect

L3

Py= ) 5P(c,0)D, + (ASS £ 2¢,%)956%(0, 0)

* The mass aspect plays the role of a density operator that shifts dimension

M —_ 2 Mla(z)(()', O-I) MiGA i GA+1
]

* The (A, s) representations = insertions of the conformal gravitons = constituents at co

+00
Gy 12(0) = J dow®~'a,(wq(0)) g>=0
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Summary:

* The profound consequences of Noether theorem for gravitational theories leads to a

new picture of quantum geometry as a state of representation of the corner symmetry
group which capture the essence of subregions entanglement.

* It encodes the non-commutativity of geometrical observables associated with subregions
representing the quantization of geometry.

* It leads discretization of space from the representation of continuous non-commutative infinite
dimensional algebras represnted as quantum fluid.

* This discretization is two-fold: It allows the possibility of corner constituents through
molecularisation and the usual area gap from the presence of the immirzi parameter

* Dynamics along null surfaces is encoded into Carrolian conservation laws for the

symmetry charges and activated at the quantum level by the representation of the
dynamical charges

* These concepts can be extended to asymptotic Dynamics which connects to S-

matrix calculations and reveals a new tower of higher spin symmetry responsible
for all known soft theorems
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