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Abstract: In the last few years, various authors have extended the covariant phase space to include arbitrary anomalies, and a notion of improved
Noether charge. After reviewing this construction and discussing examples of anomalies, | will point out that the covariance requirements of the
seminal Wald-Zoupas paper permit the presence of a special class of anomalies. To illustrate the meaning of such anomalies, one can look at the
case of future null infinity where they take the form of the soft termsin the flux-balance laws.
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Motivational question

* Wald-Zoupas (’99) showed how the covariant phase space (CPS) can be used to derive (previously
known) expressions for BMS charges and fluxes at future null infinity

. 1

M = -DsDgN4B — ZN,pNA45B

¢ In the years since, the CPS has been developed to include a general treatment of \
(i) field-dependent diffeomorphisms and (ii) anomalies
(Barnich-Compere, Hopfmuller-Freidel, Speranza, FOPS2, Chandrasekaran-Flanagan-Shehzad...)
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Motivational question

* Wald-Zoupas (’99) showed how the covariant phase space (CPS) can be used to derive (previously
known) expressions for BMS charges and fluxes at future null infinity

1 ; ;
M-==p. BN = N NE

* In the years since, the CPS has been developed to include a general treatment of
(i) field-dependent diffeomorphisms and (ii) anomalies
(Barnich-Compere, Hopfmuller-Freidel, Speranza, FOPS2, Chandrasekaran-Flanagan-Shehzad...)

* WZ never talk much about either aspects, yet the BMS group includes both;
so how come they get the right result?
and, what new perspective bring the recent developments to the WZ prescription?
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Outline:

Motivations and the inclusions of anomalies in the covariant phase space

Charge prescriptions: WZ and anomalies

The example of finite null hypersurfaces

The example of null infinity: anomalies as soft terms

Pirsa: 22100031 Page 5/60



Field-dependent diffeomorphisms

There can be various reasons to consider field-dependent diffeomorphisms

1. Gauge-fixing

2. Manipulating the constraint algebra
3. “Slicing’ in field space

.

Typical example of 1: BMS bulk extension
e the universal structure used at future null infinity fixes the symmetry vector fields there as well as
their first order extension away from it, from the second order onwardes, it is arbitrary

e.g. Bondi-Sachs coordinates:

_ 1| . — 1.
§ =70, + Y404~ ;D Ydn +0*784) - Q%émar - 5C*pTOA) + ...

e anes

tangential fixed by the arbitrary

part universal structure (namely, fixed by the bulk
coordinate choice)

Pirsa: 22100031 Page 6/60



Field-dependent diffeomorphisms

There can be various reasons to consider field-dependent diffeomorphisms

1. Gauge-fixing

2. Manipulating the constraint algebra
3. “Slicing’ in field space

-

Typical example of 1: BMS bulk extension
e the universal structure used at future null infinity fixes the symmetry vector fields there as well as
their first order extension away from it; from the second order onwardes, it is arbitrary

e.g. Bondi-Sachs coordinates:

_ ; = il
£ =18, + Y49, - Q(;D Yo + 8470,) - Q%émar - 5C*pTOA) + ...

tangential fixed by the arbitrary
part universal structure (namely, fixed by the bulk
coordinate choice)
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Field-dependent diffeomorphisms

There can be various reasons to consider field-dependent diffeomorphisms

1. Gauge-fixing

2. Manipulating the constraint algebra
3. “Slicing’ in field space

.

Typical example of 1: BMS bulk extension
e the universal structure used at future null infinity fixes the symmetry vector fields there as well as
their first order extension away from it; from the second order onwardes, it is arbitrary

e.g. Bondi-Sachs coordinates:

1+ 1. ¢
=78, + Y40, - D }'ag + & 784) QQ(EAT& - 56““"831—8‘4) +
%‘cerr’ns This 1 vs 2 captures the difference
Remark: between the finite and the infinite-distance case;
wn: and it has a very clear origin that | will explain at the end
=70, + Y404 + 170, + 1 ( ) BMSW group of arbitrary null surfaces
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Anomalies

When Sachs ’62 computed the transformation of the asymptotic shear under a BMS
transformation, it was pretty clear that it was not a diffeomorphism: d:0 # £:0

In the modern CPS construction, this discrepancy is understood by the presence of background
fields breaking covariance;

¢ in the BMS example, the conformal factor Q;

¢ if spacetime has a boundary at finite distance, the field ® localising the boundary

Notation | will use for the CPS: (z¥, d, i, £¢; g, d, I, O¢)
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Anomalies
When Sachs ’62 computed the transformation of the asymptotic shear under a BMS
transformation, it was pretty clear that it was not a diffeomorphism: d:0 # £:0

In the modern CPS construction, this discrepancy is understood by the presence of background
fields breaking covariance;

¢ in the BMS example, the conformal factor Q;
¢ if spacetime has a boundary at finite distance, the field ® localising the boundary

Notation | will use for the CPS: (z¥, d, i, £¢; g, d, I, O¢)

* dynamical fields: 9 0¢g = Leg
e background fields: @, 0P =0+# LD

Then for an arbitrary functional  §:F (g, ®) = 0gFécg + 000 ® = 0y F £eg — £¢F — 0o F £
AcF = (8¢ — £¢)F = OpF £,

If it is a form in field-space d¢[F(g,®)dg] = 0,F £:90g + Fo£:g = Le[Fog| — Os F £:P6g + F Ls¢g

& Anomaly operator (Speranza ’18) (Af =0 Lg IJE)
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Anomalies from a boundary

Consider a spacetime with a boundary B characterized by a Cartesian equation ®(z*) =0

and normal 1-form n, = —f9,®

Residual diffeomorphisms: the possible symmetries of the CPS associated

B
with this boundary must be tangential to it in order to preserve it:

¢nBo = ro@raf, £-o

Because @ is a fixed background structure in the CPS, we have an anomaly: A := ¢ — £¢ — Is¢
Agn, = (A, In f — “;fq’)n‘u

diffeos tangent at BB but not B
* E.g. For a gradient, f=1, the anomaly comes entirely from €®  at the other leaves of the ®
foliations

« There is one choice for which the anomaly vanishes: pick f = f(g) such that n* = +1

So what is the anomaly really capturing? the foliation-dependence, which breaks covariance;
and it is possible to remove anomalies working with the foliation-independent choice of unit-norm
& we can anticipate that anomalies will be prominent on null boundaries
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Anomalies on a null boundary

On an arbitrary null boundary, there is no preferred choice of f ly=—-f0,9

any quantity explicitly dependent on f will be anomalous, namely non-covariant;

e.g., the inaffinity k of the normal (Chandrasekaran-Speranza 19)

* There is no choice of normal for which the anomaly vanishes Dely, = wel,
I-dep. quantities will inherit the anomaly Aeby = weby Ageny = —ween

Nonetheless, the pull-back of the EH symplectic potential is not anomalous:
(Parattu et al 15, Myers et al 716, Hopfmuller-Freidel 16, Oliveri-Speziale 18, ...)

1 1 ‘
0 = / [(gﬂb‘ _— (9 + 2]6) ,}..u!»‘)th‘,uu + Q(T]'u - Qn#)ﬁzfi - -8711271'“(”“] ev— (SED o / 'l?MI
N 2 5 .

where £° = —2(0 + k@)en  Onecancheckthat: A© =0

But any individual term in general not covariant:

(as observed for instance in Myers et al 16, Chandrasekaran-Speranza '19)
« the boundary Lagrangian by itself is not covariant

» the Dirichlet flux here identified is not covariant

(unless we do restrictions on the variations, we will come back to this)
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CPS with field-dependent diffeos and anomalies

—lew =d(dge —ib) o —Tew =d(dge — il —qse) & —Iew = d(dge — ic0 — gse — Ag)

lyer-Wald '94, WZ ‘99 Barnich-Brandt 01 Freidel-Oliveri-Pranzetti-SS ’21
Barnich-Compere ‘05 Chandrasekaran-Flanagan-Shehzad-Speranza "21
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CPS with field-dependent diffeos and anomalies

—lew =d(dge —i¢b) o —lew =d(dge — il —qs¢) & —Iew = d(dge — ic0 — gse — Ag)

lyer-Wald '94, WZ ‘99 Barnich-Brandt o1 Freidel-Oliveri-Pranzetti-SS 21
Barnich-Compere ‘05 Chandrasekaran-Flanagan-Shehzad-Speranza "21

Only assumption: the anomaly is a boundary term, in other words, there always exist a choice of

covariant bulk Lagrangian AL = d. - L=0 "dt, Ad=o
(interesting to go beyond this assumption, but not for this talk) a: Lagrangian anomaly

It follows that A0 = dag — ase + dA¢ A: symplectic anomaly
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CPS with field-dependent diffeos and anomalies

—lew =d(dge —it) o —lew =d(dge — il —qs¢) & —Iew = d(dge — ic0 — gse — Ag)

lyer-Wald '94, WZ ‘99 Barnich-Brandt o1 Freidel-Oliveri-Pranzetti-SS 21
Barnich-Compere ‘05 Chandrasekaran-Flanagan-Shehzad-Speranza "21

Only assumption: the anomaly is a boundary term, in other words, there always exist a choice of

covariant bulk Lagrangian AL = dag - L=0 "t Ai—a
(interesting to go beyond this assumption, but not for this talk) a: Lagrangian anomaly

It follows that A0 = dag — ase + dA¢ A: symplectic anomaly

The two anomalies enter respectively the Noether charge and canonical generator calculations,

jE = IE_Q = ’iEL — ag édq‘g Jhg = —Igﬁ.o’: 5159 = 5E9 = 5]59 = fﬁg — Agﬂ — 1559

= d ((SQE_ — ’Ls@ — qo-é — "45)

W

Let us comment on the two roles separately
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Flux of the Noether charge

The Lagrangian anomaly enters the variation of the Noether charge

Je = Ie0 — Qg — ag = dgg AcL=da; & L=L4+dl, Al=a,
Consider a lateral boundary B (can be time-like or null)
Restricting to tangent diffeos that preserve the boundary, B

the second term vanishes in the pull-back
Then, two contributions to the flux:
e the symplectic flux

o the Lagrangian anomaly ; %

The anomaly introduces a contribution to the flux which is “polluted” by non-geometric quantities
Clarifying the meaning of the anomaly contribution to the flux is a goal of this talk

We will see below an example of this: the soft terms, where the non-geometric “pollution” is their
dependence on ST
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Non-integrability and charge prescriptions

The symplectic anomaly contributes to the obstruction to integrability

Jhg = —Igw éd(é‘tk = 2'56 — e = Ag) P hf

Examples of different prescriptions in the literature:

1.

Improved Noether charge

(lyer-wald ’95, Harlow 19, Freidel-Geiller-Pranzetti ‘20, Margalef-Villasenor 20,
Freidel-Oliveri-Pranzetti-SS ‘21, Chandrasekaran-Flanagan-Shehzad-Speranza 21, ...)
Wald-Zoupas

(Wald-Zoupas '99, Chandrasekaran-Flanagan-Prabhu ’18,
Ashtekar-Khera-Kolanowski-Lewandowski 21, ...)

Path-independence in field space

(Barnich-Brandt, Troessaert, Henneaux, Compere...)

Slicing

(Barnich-Troessaert, Grumiller, Sheikh-Jabbari, Zwikel, Geiller, Adami...)

. Otherrequirements... e.g. taking ¥ instead of DS as angular momentum

(Strominger et al 15, Compere-Fiorucci-Ruzziconi 20, Freidel-Pranzetti-Raclariu 21,...)
Extending the phase space, or adding a symmetric part to the symplectic form
(Ciambelli-Leigh "21, Freidel "21, Wieland ’22)
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Improved Noether charge prescription

The idea is to work with a symplectic potential that vanishes when conservative boundary
conditions are imposed: that way the system is made Hamiltonian and the charges are integrable
To achieve that, we take the pull-back on B of whatever 9 we are starting with,

(6’:9’—(5€+d19] %
fe B

where ' = pdq for some choice of polarization of the phase space

and decompose it as follows:

That way, the new symplectic flux will vanish if:

o 0'|59=0 £0 restricting the variations throughout the phase space:
= useful for conservative boundary conditions

B
¢ §|p=0=0 no flux for arbitrary variations

around special ‘stationary’ configurations in the phase space
= useful for leaky boundary conditions

(both options can and have been used in the literature)
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Improved Noether charge prescription

By changing the symplectic potential to 0 =0+ 80— do
we obtain a new Noether charge je = 10" —icL' — a; = dg;

This turns out to be related to the initial one by :

[qg =i tul Igﬁ] improved Noether charge

Why improved?

e If 9 was the bare potential of the EH action and ¢ is GHY, then the result turns the Komar
formulas into the Brown-York formulas, and this fixes the factors of two mismatch
in the masses at spatial and null infinity
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Cohomological ambiguities

Hoping that | am doing well with time, it is useful to pause for a second here in order to clarify the
relation between two seemingly opposite approaches that can be found in the literature:

Freidel-Oliveri-Pranzetti-SS ’21 (6‘ gl dﬁ)
—

Chandrasekaran-Flanagan-Shehzad-Speranza 21

The difference has to do with the way the cohomological ambiguities are handled:
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Cohomological ambiguities

Hoping that | am doing well with time, it is useful to pause for a second here in order to clarify the
relation between two seemingly opposite approaches that can be found in the literature:

Freidel-Oliveri-Pranzetti-SS 21 [6‘ g dﬁ)
—

Chandrasekaran-Flanagan-Shehzad-Speranza 21

The difference has to do with the way the cohomological ambiguities are handled:

To have a unique charge:
* FOPS2: Use a prescription to fix the cohomology ambiguities once and for all
(e.g. Anderson’s homotopy operator, or just hand-pick the ‘bare’ potentials df — 6 )

Then,
(L,£) — 1(8,6',9)

e CFSS: Fix ©’ via a choice of boundary conditions, plus fix the corner ambiguity by prescribing £

Then,
1(6",¢), (0,0) arbitrary but ambiguity affects only q and not g’
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Cohomological ambiguities

Hoping that | am doing well with time, it is useful to pause for a second here in order to clarify the
relation between two seemingly opposite approaches that can be found in the literature:

Freidel-Oliveri-Pranzetti-SS ’21 [9 g dﬁ)
—

Chandrasekaran-Flanagan-Shehzad-Speranza 21

The difference has to do with the way the cohomological ambiguities are handled:

To have a unique char

e FOPS2: Use a prescr ‘or all
(e.g. Anderson itials df — 6)
Then, (L.0)
L.t
qr
e CFSS: Fix 6’ via a ch¢ iguity by prescribing £
Then,
10’4 d not g’
My viewpoint: it does L

A notational advantages of the homotopy procedure however is that the formula is completely

symmetric
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Barnich-Troessaert bracket for the charges

Suppose we fix a prescription for the charges: A %
=
g =
integrable piece flux term

now we can ask: Is the algebra of charges correctly represented?

Recall that in standard situations, —LIew = 6,he = {hy, he} = hpy g

But in the presence of flux, this equation fails
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Barnich-Troessaert bracket for the charges

Suppose we fix a prescription for the charges: o %
=
oL 20
integrable piece flux term

now we can ask: Is the algebra of charges correctly represented?

Recall that in standard situations, =L Iew = 6,he = {hy, he} = hpy g

But in the presence of flux, this equation fails

¢ Barnich-Troessaert ’11:
new prescription for the bracket,

{ax, e} i= 0xqe + Ie Fy # — L Iew
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Cocycle and anomalies

{ax: ge} = 0xae + LeFx = g + Ko
Freidel-Oliveri-Pranzetti-S '21: we can compute K for an arbitrary theory, verify it satisfies Jacobi

Ke =i, L H%a, —1,0a¢
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Cocycle and anomalies

{ax,ae} := 0xqe + Ie Fx = qye + K
Freidel-Oliveri-Pranzetti-S '21: we can compute K for an arbitrary theory, verify it satisfies Jacobi

Kex = tgiyL + tgay — iyae previously identified in Speranza '17

(see also Chandra-Speranza "20,
Chandra-Flanagan-Shehzad-Speranza ’22: )

Remarks
* The cocycle can not be reabsorbed in the definition of the bracket if desired, so to have

{hy, e} = Ry g

« Significantly, there exist an off-shell version of this formula, given by {g,, q§}L =58 120
= imposing the closure of the algebra implies (projections of) the Einstein’s equations
= the larger the algebra, the more equations can be obtained
This reversed logic provides an independent motivation to look for enlargements of the
asymptotic symmetry group (See Laurent’s talk)

* More recent developments relating these brackets to Poisson brackets
(Ciambelli-Leigh ‘22, Freidel ‘22, Wieland ’22; Chandrasekaran-Flanagan-Shehrad-Speranza ‘22)
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Wald-Zoupas prescription

Let’s look again at the formula for the Hamiltonian generators,
Jh&* = —Igw = (5q§ — ?:59 = g5 = Ag)

Situations where integrability occurs discussed in the WZ paper:

WZ’s Case I: il + qse + Ag = 0X
e.g. spatial infinity
WZ’s Case |l icl + gse + Ae = i + 60X where i¢f issome physically recognizable

and unambiguous flux, then we can shove it

e.g. null infinity
on the left-hand side

If X is not zero, we have a shift wrt Noether charge

As we already remarked, such a shift may actually welcomed, since e.g. starting from the EH
Lagrangian the bare Noether charge would be given by the Komar formula which has well-known
shortcomings, such as giving wrong factors of 2 at both spatial and future null infinity
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The WZ prescription: flux

Case Il. To identify the preferred potential @, proceed as follows: 2
start from the pull-back of the symplectic 2-form on the boundary, N a
and require

b

0. w=460 o 0=0+56b
— -

1. it must be a local and covariant functional of the dynamical fields and background structure
2. is must vanish for arbitrary perturbations around stationary solutions
3. additional requirements that may be needed in case the first two requirements

are not enough to select a single preferred one

Remarks:

e Concerning ©: You can pick it with the homotopy, you can pick it at random; it doesn’t matter
- If you pick it a la FOPS, then the prescription is: use the freedom to change the boundary
Lagrangian to identify the physical flux
- If you pick it random, then the prescription is: use the ambiguities to change it

e Concerning 3: requirements 1 and 2 are enough for the cases studied so far

* Starting from the EH action and its "bare’ 6, one generically gets a non-zero b
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The WZ prescription: flux

Case Il. To identify the preferred potential @, proceed as follows:

start from the pull-back of the symplectic 2-form on the boundary, ]
and require N @
0. w=0380  0=0+6b 2o

— —

1. it must be a local and covariant functional of the dynamical fields and background structure
2. is must vanish for arbitrary perturbations around stationary solutions
3. additional requirements that may be needed in case the first two requirements

are not enough to select a single preferred one
Notice that there is no discussion of boundary conditions nor of boundary Lagrangian;

so this is not an improved Noether charge a priori.

However, let us zoom in on condition 2:

& It means that it has to be in the form § = pdg where p(gstationary) = 0

This suggest that we can use this prescription to define an improved Noether charge with :

=6 (£,9) = (b+ dc,0+ éc)

But let us see first what is the prescription given by WZ for the charge
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The WZ prescription: charges

Since we have identified the physical flux through 6 = 6 + db,
*_
that is the only quantity that should be subtracted in order to obtain an integrable charge:

Jég:{fvz:: - Igw aF digé

Comparing this to the general formula: ng = —Tew=d (6gc — i¢0 — qse — A¢)

» we see that we are shoving the flux on the LHS;
* we can already anticipate a potential discrepancy if it happens that gs¢ + A¢ = 30X # 0

This potential discrepancy turns out to be exactly the anomaly of b

To prove this, we need to go into some details, starting with a bit of archeology:
do WZ allow for anomalies and 0§ # 0?
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WZ covariance and soft anomalies

cazs of null mfinity, @ 15 raquired to be conformally imvariant). Our proposal

is the following;: Let M

4

satisfy?

More precisely, by “locally eonstructed
MUF < MUR w o W syl wluedy o

and (&' ) nre such tha
ihat. for all &
pullback map an t
at 1 we hove © -

ve mean the fo
o tho
x5t An apen

7 sue

it aml ggh

tha diffeomarphl:

5 TN esseniia
priy 3moothness or ans
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WZ covariance and soft anomalies

cass of null infinity, @ 12 required to be conformally imvariant). Our propasal
is the following: Let M, satisfy'?

Agé =0 = Al +0Acb— Ascb=dae — ase + dAg =0,

Iggg =0 = ase = —dtjgg.
Putting together the two requirements, we find

dag = —d(gse + Ag)

1. WZis defined also with a class of anomalies and field-dep. diffeos: mild/soft anomalies
2. When they are present, the prescription is to shift the Noether charge so to remove
the anomalous flux:

dﬁfg = IEG = E_Lg = qu = d(jg +q: = 159

Pirsa: 22100031 Page 40/60



First example:
null hypersurface at finite distance
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CFP covariant phase space on a null hypersurface
Chandrasekaran-Flanaga-Prabhu ‘18
There is an interesting story about the pull-back on null hypersurfaces, and various covariant
phase spaces have been studied

For lack of time, | will just go straight to CFP and refer you to
a paper we are posting very soon for a more general discussion
In CFP, we restrict e =5l =gk —

) d 0l, =0k=0 =790
then:

o %
o= (U” - %‘7“ )5’hw en +26(0yen)

N

S e

candidate §

We want to identify a preferred potential via 6 = 3 + 0b , satisfying:

1. Covariance can be satisfied using the kinematical freedom to get rid of
the inaffinity and of the spin-1 momentum : Al =0

2.Stationarity satisfied by non-expanding horizons: """ =6, =0

=) b= _29(E)6N = —QdES
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The CFP anomalies and charges

s 7
Preferred WZ potential: 0= (0"’“’ - %7“‘”)6%” EN

Charge shift: b= —29(5)6‘;\/‘

Recall that Ay = weby Acey = —wgey o Ab=0

no anomaly shift

Furthermore, A0 =0 hence az =0

We conclude that :
* no anomalous flux
* the WZ charge obtained by CFP is an improved Noether charge with £ =10, ¥ =0

In particular, no anomaly contribution to the i-Noether fluxes ~ dgec = I¢0

Pirsa: 22100031 Page 43/60



Comments

On the importance of the covariance requirement:
without it we can for instance keep k, and then the charges will depend on it

7 5 0, ; = 2 0y + 2k 5
6 = (cr'“‘ — (T}fy‘“' )J’WU EN — 7= (o“ — %q/‘”’ )5'7w/ EN

Acb #0

(the problem here is that the inaffinity does not capture properties of the geometry of the
hypersurface, but depends on non-geometric choices such as the scaling and the extension

On the importance of the stationarity requirement:

It allows us to get charges that automatically preserved on non-expanding horizons,
such as the area, and all multipole moments (AKKL 21)

on the other hand, such charges are not great beyond the NEH case;

for instance, the area changes on a null cone in Minkowski, even though there is no physical flux;
one may then be interested in an alternative definition that gives conserved charges in this case
This can be obtained playing with the boundary conditions (with Odak and Rignon-ret, to appear)
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Second example:
future null infinity

Disclaimer: We already know that the WZ charges at null infinity are Noether charges
for a specific boundary Lagrangian (BMSW "21)

Here | want to show how they can be derived as an improved Noether charge,

and how this requires discussing anomalies
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Scri symplectic potential

Pull-back of the EH symplectic potential at Scri, in Bondi coordinates:
g (2611-1’ = D .DECE) - SN 5Ny C’"lB))e-»
Z o NAlB 5'VAB g0\ VB T

To identify the preferred symplectic potential:
1. covariance
2. stationarity

At first sight, we could identify it as NoC : it vanishes for all perturbations are stationary
spacetimes, thus 2 is satisfied. But 12 A(NéCez) = 07

To answer that, we have to look at the anomalies at Scri.
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Anomalies and Geroch’s news

> Residual diffeomorphisms:
Starting from the general framework of BMSW, ¢ -

=78, + Y40, r=T+ uW

the transformations on the phase space are:

0¢ GaB = (£y — 27)das,
8¢ Cap = (18y + £y — 7)Cap — 2D (405,
0¢ Nap = (78y + £¥v)Nap — 2D 40p)T,

These quantities live on the bundle R x S?, whose Lie derivative is Le=70,+ £y

Pirsa: 22100031 Page 47/60



Anomalies and Geroch’s news

> Residual diffeomorphisms:
Starting from the general framework of BMSW, o

E=T0, - Vo0 T=T+uW
the transformations on the phase space are:
55 JAB = (ng — 27")@15, AE daB = —27qaB,
8¢ Cap = (10 + Ly — 7)Cap — 2D (4057, &  AgCap = —7Cap — 2D49pT,
5& NJ’{B = (Tau_ 4= £Y)NAB — QD(ABB)T'J AE N’iB — _ZD(JlaB)'i-}

These quantities live on the bundle R x S?, whose Lie derivative is Le=70,+ £y

Remark: the anomalous transformations are identical for the BMS case.
Let’s focus on the BMS case from now on
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Anomalies and Geroch’s news

> Residual diffeomorphisms:
Starting from the general framework of BMSW, "

E=T0, - Yie0u T=T+uW
the transformations on the phase space are:
55 JAB = (ng - 27")@13, AE daB = —274aB,

(55 Cap = (10y + Ly — 7)Cap — 2D<‘483>T, & Af Cap = —7Cyp — QD(AaB)T:
5¢ Nap = (10, + £v)Nap — 2D 40p)7, Ag Nap = —2D(40p)T,

These quantities live on the bundle R x S?, whose Lie derivative is Le=70,+ £y

Remark: the anomalous transformations are identical for the BMS case.
Let’s focus on the BMS case from now on

* The metric anomaly is well known:
in BMS the Bondi frames are fixed, so 0dap = 0¢dap =0
but the (boosts of the) BMS group act onit, @¢(7aB) =€ " qaB

* The News anomaly is also well known: as shown by Geroch ’77, one can define
the Geroch news as (in this conference often simply called covariant News)

Nap = Nag 3:(NAB = p(AB)) A¢(N—p)=0
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Anomalies and Geroch’s news

> Residual diffeomorphisms:
Starting from the general framework of BMSW, "
E=T0, + Ye0u =T+ uW
the transformations on the phase space are:
55 JAB = (ng — 27")@15, AE daB = —27qaB,
8¢ Cap = (10 + Ly — 7)Cap — 2D(40py7, &  AgCap = —7Cap — 2D49pT,
5&' NJ’{B = (Tau_ 4= £Y)NAB = QD(ABB)T'J AE N’iB — _QD(JlaB)'i-}

These quantities live on the bundle R x S?, whose Lie derivative is Le=70,+ £y

Remark: the anomalous transformations are identical for the BMS case.
Let’s focus on the BMS case from now on
* The metric anomaly is well known:

in BMS the Bondi frames are fixed, so 0dap = 0¢Gap =0

but the (boosts of the) BMS group act onit, ¢¢(7an) =€ > qap

* The News anomaly is also well known: as shown by Geroch ’77, one can define
the Geroch news as (in this conference often simply called covariant News)

Nap = Nag 3:(NAB = p(AB)) A¢(N—p) =0

to be fair, | think that the better notation would be simply N — N,N—§,C See Marios’ talk
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Preferred symplectic potential at Scri

Pull-back of the EH symplectic potential at Scri, in Bondi coordinates:
o= (2611-1’ — D.DECE) N IeE e 5N, C’"lB))e-»
Z 5 NALB 5'VAB g0\ VB T

Identify the preferred symplectic potential:
1. covariance
2. stationarity

At first sight, we could identify it as NoC : it vanishes for all perturbations are stationary
spacetimes, thus 2 is satisfied. But 12 A¢(Né6Cez) = 07
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Preferred symplectic potential at Scri

Pull-back of the EH symplectic potential at Scri, in Bondi coordinates:
g=c (26M  WDL.DCE) S NLieE 5N, C’"lB))e-»
Z o NVALB 5'VAB g0\ VB T

Identify the preferred symplectic potential:
1. covariance
2. stationarity

At first sight, we could identify it as NoC : it vanishes for all perturbations are stationary
spacetimes, thus 2 is satisfied. But1? A¢(NdCez) = 07

The answer is no! this candidate preferred potential is anomalous:
A¢(N6Cer) = —(2DD7)dCer

To solve this, add and subtract Geroch’s tensor: then, A ((N — p)éCez) =0

As aresult, b= (2M + D04 - éN_leCAB + %PABGAB) 34

Page 53/60



167G =1
Preferred symplectic potential at Scri

b 1 . Il _
b= (2M + DaU* - SNasCAP + 2 papCAP ez

Recall that the (trace-less part of the) Geroch tensor vanishes in Bondi frames:  2(aB) =0

So one may think the shift is irrelevant; but it is not, this shift is crucial to get the right charges!
(justlike f(zo) =0, f'(x0) #0 )

| DiayStreubel’s

1 s
Explicitly, ¢ 1= q¢ +1¢b = T(4M — iDDC) Py Py

so this i-Noether charge satisfies dge = 10 — ag

But as explained earlier, satisfying the WZ requirements guarantees that
(_1.5 — Asb B ng

so we can shove the anomaly in the definition of the charge and get the WZ flux.
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Preferred symplectic potential at Scri

g% =qe +ieb+ 8¢ Agb = dsg Se = iTDDC'
We conclude that :
» there are soft anomalies at Scri
e the "naive’ improved Noether chargebasedon ¢=10, ¥ =0
is not the WZ charge, and would have a flux that includes anomalies
* The difference is a soft term; working with the naive Noether charge we would get
different numerical factors in the memory effects

e In other words, the WZ prescription uniquely selects the corner Lagrangian

1
_ : = =
{=b+dc c T

Further remarks:

Same conclusions were already reached in Chandrasekaran-Flanagan-Shehzad-Speranza "21
our contribution is a more explicit analysis in terms of anomalies

Caveat: this corner term is slightly different from the analysis done in BMSW ’21,
because there we used the tetrad formulation, and it is known that the two differ by corner terms
(De Paoli-S 18, Oliveri-S “19)
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A historical remark

Of course, WZ computed the charges without ever talking about anomalies

What we have shown here is:

* how the WZ result can be framed in the current language of CPS with anomalies

e how in return this allows to understand the role that anomalies have in the construction of charges

However, we can also make a useful historical remark
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A historical remark

Of course, WZ computed the charges without ever talking about anomalies

What we have shown here is:
* how the WZ result can be framed in the current language of CPS with anomalies
e how in return this allows to understand the role that anomalies have in the construction of charges

However, we can also make a useful historical remark
Let’s go back to the general form of a mild/soft anomaly:

dag = —d(qse + Ae)

Inthe BMS case, A¢ =0 hence sg¢ = —(s¢
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A historical remark

Of course, WZ computed the charges without ever talking about anomalies
What we have shown here is:

* how the WZ result can be framed in the current language of CPS with anomalies
e how in return this allows to understand the role that anomalies have in the construction of charges

However, we can also make a useful historical remark
Let’s go back to the general form of a mild/soft anomaly:

dag = —d(qse + Ae)

In the BMS case, A; = 0 hence sg¢ = —(s¢

So even if WZ could get away without ever mentioning explicitly anomalies, they should have at
least talked about field-dependent diffeos... and in fact they do, claiming (albeit w/o detailed proof)
that the field-dependence of the Geroch-Winicour extension integrates to zero

*WZ'99 They give an ok indirect argument using Geroch-Winicour extension

* BT 11 Explicit consistent calculation, no cheating!

* FN 15 They use the Winicour-Tamburino extension and give a wrong argument
* GPS 21 They use the Winicour-Tamburino extension and give no argument
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Scri as a NEH in the unphysical spacetime

Because Scri is very different from a null surface in spacetime:

it is a null surface in the unphysical spacetime

the conformal compactification involved changes the nature of the background structure
* O : location of the boundary

¢ Q) : location of the boundary and conformal factor

Specifically, the universal structure is
c®: [l =wl
«Q: [(¢,0) = (w*q,wl)]

These qualitative considerations can be made very precise, and one can show that starting from
an abstract spacetime and write general formulas for the fluxes and the charges;

when specified to these different universal structures it reproduces the two different settings.
(Ashtekar and S, Scri as a NEH, to appear)

In particular, the extra structure made available by the conformal factor eliminates the dilatation
from the symmetry group, and thus the area from the charges (in standard BMS)

Along these lines, | learned from Luca that the Carrollian framework also allows to treat
general [(g,!) = (w"q,wl)] and thus encompass both Scri and finite surfaces as
two cases of a unique framework, which | think it is very nice and shows convergence
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References

For more details:

Gloria Odak, Antoine Rignon-Bret and S,
Revisiting the WZ prescription: soft terms as anomadlies, to appear

Gloria Odak, Antoine Rignon-Bret and S,
Exploring alternative boundary conditions on null hypersurfaces, to appear
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