Title: Flat asymptotics, charges and dual charges -- what the Cotton can do

Speakers: Marios Petropoulos

Collection: Quantum Gravity Around the Corner

Date: October 07, 2022 - 11:30 AM

URL: https://pirsa.org/22100029

Abstract: In this talk I will explore the role of the boundary Cotton tensor in the reconstruction of the solution space of four-dimensional asymptotically AdS and mostly asymptotically flat spacetimes. I will discuss charges from a purely boundary perspective, which emerge in sets of electric and magnetic towers, not necessarily conserved and possibly including subleading components.

Pirsa: 22100029

FLAT ASYMPTOTICS, CHARGES AND DUAL CHARGES WHAT THE COTTON CAN DO

Marios Petropoulos

QUANTUM GRAVITY AROUND THE CORNER
PERIMETER INSTITUTE FOR THEORETICAL PHYSICS
WATERLOO

October 2022

Pirsa: 22100029 Page 2/28

HIGHLIGHTS

- 1 Plan & motivations
- 2 CARROLLIAN GEOMETRIES & CONSERVATION PROPERTIES
- 3 Asymptotics, reconstruction and AdS
- 4 BACK TO RICCI-FLAT SPACETIMES
- 5 OUTLOOK

Pirsa: 22100029 Page 3/28

Questions & cues

WHY ASYMPTOTIC SYMMETRIES AND CHARGES? [KOMAR '59; ADM '60; BMS '62]

- Universal features of solutions to Einstein's equations
- Hints to holography and in particular flat holography

IRRESPECTIVE OF HOLOGRAPHIC CORRESPONDENCE...

... a solution is captured by a set fields defined on a conformal boundary and obeying conformal boundary dynamics [Penrose '63]

CAN WE COMPUTE CHARGES FROM A BOUNDARY PERSPECTIVE?

Yes as a synthesis of bry. symmetry and bry. dynamics

Pirsa: 22100029

HERE CARROLLIAN DYNAMICS - WHY?

Asymptotically flat spacetimes \rightarrow null boundary \rightarrow Carrollian geometry

WHAT IS THE COTTON? [ÉMILE COTTON, 1899]

- Covariant derivative of the Einstein tensor in Riemannian geometries – remarkable in 3 dimensions (no Weyl)
- Admits Carrollian relatives on Carrollian geometries

THE MAIN MESSAGE FOR 4-DIM RICCI-FLAT SPACTIMES

Boundary energy and momenta & Carrollian Cotton tensors

- generate infinite *dual towers of charges* determined from a boundary account (e.g. mass vs. nut)
- carry part of the *infinite Chthonian information* required for reconstructing the bulk

Pirsa: 22100029 Page 5/28

THE CARROLLIAN NULL BOUNDARY

From AdS_n to flat_n asymptotics

$$\Lambda = -\frac{(n-1)(n-2)}{2}k^2 \rightarrow 0$$

 $k \equiv \text{boundary velocity of light} \leftrightarrow k \rightarrow 0 \text{ Carrollian limit}$

The null bry. \mathscr{I}^{\pm} is a Carrollian geometry in n-1 dimensions

CARROLLIAN GEOMETRY [LÉVY-LEBLOND '65; SEN GUPTA '66; DUVAL ET AL. '14; BEKAERT ET AL. '16;

SEE ALSO N. OBERS' & G. OLING' TALKS]

Basic ingredients in d+1 dimensions (coordinates t, \mathbf{x})

- degenerate metric: $ds^2 = 0 \times (\Omega dt b_i dx^i)^2 + a_{ij} dx^i dx^j$
- field of observers: $\frac{1}{Q}\partial_t$ (t should be spelled u)
- clock form: $\mu = \Omega dt b_i dx^i$ (Ehresmann connection)

I

GENERAL COVARIANCE (IN THE PRESENT PARAMETERIZATION)

Carrollian diffeomorphisms: $t' = t'(t, \mathbf{x}) \quad \mathbf{x}' = \mathbf{x}'(\mathbf{x})$

Pirsa: 22100029 Page 7/28

Consequences of the Bry. Carrollian structure

I – RICCI-FLAT SPACETIME RECONSTRUCTION IN n DIMENSIONS should be Weyl invariant and Carrollian covariant wrt the n-1 -dim conformal bry. – gauges as Bondi, Newmann–Unti are not

II – FLAT HOLOGRAPHY - *IF IT EXISTS* calls for a *Carrollian conformal field theory* on an n-1-dim bry.

Pirsa: 22100029 Page 8/28

DYNAMICS

GENERAL-COVARIANT ACTION AND ENERGY-MOMENTUM TENSOR

Pseudo-Riemannian spacetimes in d+1 dim $T^{\mu\nu}=\frac{2}{\sqrt{-g}}\frac{\delta S}{\delta g_{\mu\nu}}$

- Weyl invariance $\rightarrow T^{\mu}_{\ \mu} = 0$
- general covariance $(\xi = \xi^{\mu}(t, \mathbf{x})\partial_{\mu} \text{ diffeos}) \rightarrow \nabla_{\mu} T^{\mu\nu} = 0$
- ξ conformal Killing $\to I^{\mu} = \xi_{\nu} T^{\mu\nu}$ $Q_{\xi} = \int_{\Sigma_d} *I$ conserved

CARROLLIAN-COVARIANT ACTION, ENERGY AND MOMENTUM

[CIAMBELLI, MARTEAU '18; COMPARISON WITH G. OLING' TALK]

$$\begin{cases} \Pi^{ij} = \frac{2}{\sqrt{a\Omega}} \frac{\delta S}{\delta a_{ij}} & \text{energy-stress tensor} \\ \Pi^{i} = \frac{1}{\sqrt{a\Omega}} \frac{\delta S}{\delta b_{i}} & \text{energy flux} \\ \Pi = -\frac{1}{\sqrt{a}} \left(\frac{\delta S}{\delta \Omega} + \frac{b_{i}}{\Omega} \frac{\delta S}{\delta b_{i}} \right) & \text{energy density} \end{cases}$$

Pirsa: 22100029 Page 9/28

In Carrollian spacetimes: conservation equations

- Weyl covariance $\rightarrow \Pi^{i}_{i} = \Pi$
- Carollian covariance $(\xi = \xi^t(t, \mathbf{x})\partial_t + \xi^i(\mathbf{x})\partial_i$ diffeos)

$$\rightarrow \begin{cases} \frac{1}{\Omega} \hat{\mathcal{D}}_t \Pi + \hat{\mathcal{D}}_i \Pi^i + \Pi^{ij} \xi_{ij} = 0 & \text{time} \\ \left(\frac{1}{\Omega} \hat{\mathcal{D}}_t \delta^i_j + \xi^i_j \right) P_i + \hat{\mathcal{D}}_i \Pi^i_j + 2\Pi^i \varpi_{ij} = 0 & \text{space} \end{cases}$$

 \rightarrow momentum P_i

CONSERVED CURRENTS AND CHARGES

• Carrollian current: Carrollian scalar κ and vector K^i

• Carrollian divergence: $\mathcal{K} = \frac{1}{\Omega} \hat{\mathcal{D}}_t \kappa + \hat{\mathcal{D}}_j K^j$

• Charge: $Q_K = \int_{\Sigma_d} \mathrm{d}^d x \sqrt{a} \left(\kappa + b_i K^i \right)$ conserved if K = 0

Carrollian conformal isometries $\xi = \xi^t \partial_t + \xi^i \partial_i$

Conformal Killings via $\mathscr{L}_{\xi}a_{ij}$ and $\mathscr{L}_{\xi}\frac{1}{\Omega}\partial_t$ but not $\mathscr{L}_{\xi}\mu$

•
$$\kappa = \xi^i P_i - \xi^{\hat{t}} \Pi$$
 and $K^i = \xi^j \Pi_j^{\ i} - \xi^{\hat{t}} \Pi^i$ $\xi^{\hat{t}} = \xi^t - \xi^i \frac{b_i}{\Omega}$

ullet not conserved: $\mathcal{K}=-\Pi\cdot\mathscr{L}_{\xi}\mu$ [Petkou, Petropoulos, Rivera-Betancour, Siampos '22]

REMARKABLE PROPERTY [Clambelli, Leigh, Marteau, Petropoulos '19]

 $\frac{1}{2\Omega}a^{ik}\left(\partial_t a_{kj} - a_{kj}\partial_t \ln \sqrt{a}\right) = \xi^i_{\ j} = 0 \Leftrightarrow a_{ij}(t,\mathbf{x}) = \mathrm{e}^{\sigma(t,\mathbf{x})}\bar{a}_{ij}(\mathbf{x}) \Leftrightarrow \text{conformal Carroll isometries} \equiv \mathrm{conf}[\bar{a}_{ij}(\mathbf{x})] \ltimes \text{supertranslations}$

$$d+1=3 \rightarrow \mathfrak{so}(3,1) \ltimes \text{supertranslations} \equiv \text{BMS}_4$$

generally $BMS_{d+2} \equiv ccarr(d+1)$

Pirsa: 22100029 Page 11/28

IN SUMMARY

MAIN MESSAGES

- Null boundaries in asymptotically flat spacetimes are Carrollian geometries – zero speed of light
- Carrollian geometries with $\xi^{ij}=0$ have an *infinite tower of* conformal Killings
- An infinite tower of conformal-Killing charges exist but not all are always conserved

Pirsa: 22100029 Page 12/28

HIGHLIGHTS

- 1 PLAN & MOTIVATIONS
- 2 CARROLLIAN GEOMETRIES & CONSERVATION PROPERTIES
- 3 Asymptotics, reconstruction and AdS

I

- 4 BACK TO RICCI-FLAT SPACETIMES
- 5 OUTLOOK

Pirsa: 22100029 Page 13/28

PURE GRAVITY - ASYMPTOTICALLY FLAT OR ADS

Basic field in pure gravity: Metric G_{AB} in n=d+2 dim

 $\{r, t, x^i\}$, i = 1, ..., d plus gauge fixing (n = d + 2 conditions) \rightarrow find the solutions as O $(1/r^n)$ with coefficients $f(t, \mathbf{x})$

GAUGE CHOICE: TWOFOLD GOAL

- reach manifest Weyl invariance & general covariance & possibly local Lorentz invariance for the dynamics on the n-1-dim conformal boundary (admitting $k \to 0$ limit excludes WFG [Ciambelli, Leigh '20])
- define charges from a purely boundary perspective

Pirsa: 22100029 Page 14/28

EINSTEIN SPACETIMES COVARIANTLY RECONSTRUCTED

SOLUTION SPACE WITH COVARIANT INCOMPLETE MODIFIED

Newman-Unti gauge i.e. $eta=eta_0(t,\mathbf{x})$ & $G_{ri}
eq 0$ [see M. Geiller' talk]

- $\frac{n(n-1)+2}{2}$ Einstein's equations $\rightarrow n^2-3$ functions of (t,\mathbf{x})
 - \rightarrow boundary data $\mu, \nu, \ldots \in \{0, 1, \ldots, n-2 = d\}$
 - $g_{\mu\nu}$ symmetric $\leftarrow \frac{n(n-1)}{2}$ boundary metric (no Dirichlet bc!)
 - $T_{\mu\nu}$ symmetric and traceless $\leftarrow \frac{n(n-1)}{2} 1$ conformal boundary energy–momentum tensor
 - $u^{\mu} \leftarrow n-2$ (due to the gauge incompleteness $G_{ri} \neq 0$) boundary normalized vector field [see A. Delfante' talk]
- remaining n-1 Einstein's equations $\nabla_{\mu} T^{\mu\nu} = 0$

Pirsa: 22100029

On arbitrary (boundary) geometry $g_{\mu
u}$ of Dim d+1

$$T^{\mu\nu} = \varepsilon \frac{u^{\mu}u^{\nu}}{k^2} + \frac{\varepsilon}{d}h^{\mu\nu} + \tau^{\mu\nu} + \frac{u^{\mu}q^{\mu}}{k^2} + \frac{u^{\nu}q^{\mu}}{k^2}$$

- $\|\mathbf{u}\|^2 = -k^2$ $h^{\mu\nu} = g^{\mu\nu} + \frac{u^{\mu}u^{\nu}}{k^2}$
- q^{μ} , $\tau^{\mu\nu}$ transverse plus $\tau^{\mu}_{\ \mu} = 0$
- → relativistic Weyl-covariant "fluid"

In 4-dim bulk (3-dim boundary – d=2): The Cotton tensor

[de haro '08; Mansi et al. '09; de Freitas et al. & Bakas et al. '14; Gath et al. '15; Ciambelli et al. '18]

$$C_{\mu
u} = \eta_{\mu}^{\
ho\sigma}
abla_{
ho} \left(R_{
u \sigma} - rac{R}{4} g_{
u \sigma}
ight)$$
 symmetric, traceless, $abla_{\mu} C^{\mu
u} = 0$

decomposed along u^{μ} : c, c^{μ} , $c^{\mu\nu}$ transverse plus $c^{\mu}_{\ \mu} = 0$

$$C_{\mu\nu} = c \frac{u^{\mu} u^{\nu}}{k^2} + \frac{c}{2} h^{\mu\nu} + c^{\mu\nu} + \frac{u^{\mu} c^{\mu}}{k^2} + \frac{u^{\nu} c^{\mu}}{k^2}$$

In n = 4 dimensions $\Lambda = -3k^2$

General solution: 6+5+2 arbitrary boundary data

$$\bullet \ \mathsf{d}s^2 = -k^2 \left(\Omega \mathsf{d}t - b_i \mathsf{d}x^i\right)^2 + a_{ij} \mathsf{d}x^i \mathsf{d}x^j \to \{c, c^\mu, c^{\mu\nu}\}$$

•
$$T_{\mu\nu} \rightarrow \{\varepsilon = 2p, q^{\mu}, \tau^{\mu\nu}\}$$

$$ullet$$
 $\mathbf{u} = u_{\mu} dx^{\mu}
ightarrow \left\{ \sigma^{\mu
u}, \omega^{\mu
u}, \mathbf{A} = rac{1}{k^2} \left(\mathbf{a} - rac{\Theta}{2} \mathbf{u}
ight), \mathscr{D}_{\mu}
ight\}$

$$\begin{split} \mathrm{d}s_{\mathsf{Einstein}}^2 &= 2\frac{\mathbf{u}}{k^2}(\mathrm{d}r + r\mathbf{A}) + r^2\mathrm{d}s^2 - 2\frac{r}{k^2}\sigma_{\mu\nu}\mathrm{d}x^{\mu}\mathrm{d}x^{\nu} + \frac{\mathsf{S}}{k^4} \\ &+ \frac{8\pi G}{k^4 r} \left[\varepsilon \mathbf{u}^2 + \frac{4\mathbf{u}}{3} \left(\mathbf{q} - \frac{1}{8\pi G} * \mathbf{c} \right) \right. \\ &+ \left. \frac{2k^2}{3} \left(\boldsymbol{\tau} + \frac{1}{8\pi G k^2} * \boldsymbol{c} \right) \right] + \frac{1}{r^2} \left(c \gamma \frac{\mathbf{u}^2}{k^4} + \cdots \right) \\ &+ O\left(\frac{1}{r^3} \right) \end{split}$$

$$\mathbf{I}$$

$$S_{\mu\nu} = 2u_{(\mu} \mathcal{D}_{\lambda} \left(\sigma_{\nu} \right)^{\lambda} + \omega_{\nu} \right)^{\lambda} - \frac{\mathcal{R}}{2} u_{\mu} u_{\nu} + 2\omega_{(\mu}{}^{\lambda} \sigma_{\nu)\lambda} + (\sigma^2 + k^4 \gamma^2) h_{\mu\nu} \end{split}$$

Pirsa: 22100029 Page 17/28

What can the Cotton do in AdS₄ asymptotics?

 $C_{\mu\nu} \neq 0 \Leftrightarrow$ non-conformally flat bry. \leftrightarrow asymptotically *locally* AdS bulk (ex. Taub–NUT)

 ξ bry. conformal Killing o $I^\mu = \xi_
u T^{\mu
u}$ and $I^\mu_{
m Cot} = \xi_
u C^{\mu
u}$

$$Q_{\xi} = \int_{\Sigma_2} *\mathsf{I} \quad \text{and} \quad Q_{\mathsf{Cot}\xi} = \int_{\Sigma_2} *\mathsf{I}_{\mathsf{Cot}}$$

electric and magnetic dual conserved charges (bulk mass vs. nut)

- $Q_{\mathrm{Cot}\xi} \sim$ magnetic Komar charges: off–shell conservation
- Limitation in AdS: at most 10 conformal Killings (d + 1 = 3)

Extendable in Ricci-flat spacetimes - more interesting

Pirsa: 22100029 Page 18/28

HIGHLIGHTS

- 1 PLAN & MOTIVATIONS
- 2 CARROLLIAN GEOMETRIES & CONSERVATION PROPERTIES
- 3 Asymptotics, reconstruction and AdS
- 4 BACK TO RICCI-FLAT SPACETIMES

į

5 OUTLOOK

Pirsa: 22100029 Page 19/28

RICCI-FLAT IN COVARIANT NEWMAN-UNTI GAUGE

```
Full solution space in n=4 [Brussels & Paris Groups] ds^2_{Ricci-flat} described in terms of 2+1 Carrollian boundary data

• Carrollian geometry (6) with zero geometrical shear \xi_{ij}

• degenerate metric (3) d\ell^2 = a_{ij} dx^i dx^j

• Ehresmann connection (3) \mu = \Omega dt - b_i dx^i

• Carrollian conformal "fluid" (5) [see L. Freidel' talk]

• energy (1) \varepsilon

• momenta – heat current (2) and stress tensor (2) \pi_i \& E_{ij}

• Carrollian-fluid "velocity" (2) hydro-frame freedom

• Carrollian dynamical shear (2) \mathscr{C}_{ij}

• infinite number of further Carrollian data obeying Carrollian dynamics – at every O (1/r^n): Chthonian Note: last 2 items absent for algebraically special solutions
```

Pirsa: 22100029 Page 20/28

2 + 1 dim Carrollian space \rightarrow Carrollian Cotton tensors

expansion of c, c^{μ} , $c^{\mu\nu}$ in powers of k^2

- 4 sets of momenta Π_{Cot} , Π_{Cot}^i , P_{Cot}^i , Π_{Cot}^{ij}
- 4 sets of Carrollian conservation equations

only 2 sets if $\xi_{ij} = 0$ $(c, \psi_i, \chi_i, \Psi_{ij}, X_{ij})$

I

Pirsa: 22100029 Page 21/28

RICCI-FLAT SPACETIMES UP TO O $(1/r^3)$

$$ds_{\text{Ricci-flat}}^{2} = 2\mu \left[dr - \frac{r\theta + \hat{\mathcal{K}}}{2} \mu + \left(r\varphi_{i} - *\hat{\mathcal{D}}_{i} * \varpi - \frac{1}{2} \hat{\mathcal{D}}_{j} \mathcal{C}_{i}^{j} \right) dx^{i} \right]$$

$$+ \mathcal{C}_{ij} \left(r dx^{i} dx^{j} - *\varpi * dx^{i} dx^{j} \right) + \left(r^{2} + *\varpi^{2} + \frac{\mathcal{C}_{kl} \mathcal{C}^{kl}}{8} \right) d\ell^{2}$$

$$+ \frac{1}{r} \left[8\pi G \varepsilon \mu^{2} - \frac{4}{3} \left(*\psi_{i} - 8\pi G \pi_{i} \right) dx^{i} \mu \right]$$

$$- \frac{16\pi G}{3r} E_{ij} dx^{i} dx^{j} + \frac{1}{r^{2}} \left(*\varpi_{\mathbf{f}} \mu^{2} + \cdots \right) + O\left(\frac{1}{r^{3}} \right)$$

- $4\pi G \varepsilon \frac{1}{8} \mathscr{C}^{jk} \hat{\mathcal{N}}_{jk} = M$ Bondi mass aspect [see R. Ruzziconi' talk and refs.]
- $\hat{\mathcal{N}}^{ij} = \frac{1}{\Omega} \hat{\mathcal{D}}_t \mathcal{C}^{ij}$ covariant Bondi news
- $4\pi G\varepsilon + \frac{\mathrm{i}}{2}c$ complex mass [see A.-M. Raclariu' talk $\mathcal{M}+\mathrm{i}\,\tilde{\mathcal{M}}$]
- $*\psi_i 8\pi G\pi_i = N_i$ angular momentum aspect
- possibly resummable (energy & momenta ↔ Carrollian Cotton)

SALIENT FEATURES

- Weyl invariance & Carrollian covariance wrt boundary
- boundary Carrollian "fluid" with Π , Π^i , P^i , Π^{ij} under external force free if zero dynamical shear \mathcal{C}_{ij}
- always $\xi_{ij} = 0 \Leftrightarrow \infty$ conformal Carrollian group BMS₄ \equiv asymptotic bulk symmetries
- boundary Carrollian Cotton in the form
 - Π_{Cot} , Π_{Cot}^{i} , P_{Cot}^{i} , Π_{Cot}^{ij} (c, χ_{i}, χ_{ij}) • $\tilde{\Pi}_{\text{Cot}}$, $\tilde{\Pi}_{\text{Cot}}^{i}$, $\tilde{P}_{\text{Cot}}^{i}$, $\tilde{\Pi}_{\text{Cot}}^{ij}$ (ψ_{i}, Ψ_{ij})

obeying Carrollian dynamics

part of the fluid data are determined by the Cotton data

Pirsa: 22100029 Page 23/28

Example of equation

REMINDER Carrollian "fluid" energy equation

$$\frac{1}{\Omega}\hat{\mathcal{D}}_t\Pi + \hat{\mathcal{D}}_i\Pi^i + \Pi^{ij}\xi_{ij} = 0$$

Here
$$\frac{1}{\Omega}\hat{\mathcal{D}}_t\varepsilon + \frac{1}{8\pi G}\hat{\mathcal{D}}_i * \chi^i =$$

$$\frac{1}{16\pi G} \left(\hat{\mathcal{D}}_{i} \hat{\mathcal{D}}_{j} \hat{\mathcal{N}}^{ij} + \mathcal{C}^{ij} \hat{\mathcal{D}}_{i} \hat{\mathcal{R}}_{j} + \frac{1}{2} \mathcal{C}_{ij} \frac{1}{\Omega} \hat{\mathcal{D}}_{t} \hat{\mathcal{N}}^{ij} \right)$$

Page 24/28

QUOTABLE

The structure of the source is mirroring the Carrollian Cotton

Ŧ

SPIN OFF: TOWERS OF CARROLLIAN CHARGES [SEE A. SERAJ' TALK]

From the Boundary Carrollian "fluid:" **ELECTRIC TOWER** Q^e_{ξ} conserved on-shell for zero shear and for $\mathscr{L}_{\xi}\mu=0$

From the boundary Carrollian Cotton: Magnetic Tower

 $\mathit{Q}_{\xi}^{\mathsf{m}}$ conserved for $\mathscr{L}_{\xi}\mu=0$

I

SELF-DUAL TOWER

 Q_{ξ}^{sd} conserved $\forall \xi$

Other towers - electric & magnetic

From Chthonian Carrollian data associated with the *subleading* O $(1/r^n)$ terms in the bulk action – under construction

Pirsa: 22100029 Page 25/28

THE LEADING TOWERS

REMINDER:
$$Q_K = \int_{\Sigma_2} \mathrm{d}^2 x \sqrt{a} \left(\kappa + b_i K^i \right)$$
 $\xi \in \mathrm{BMS}_4$

Electric
$$\kappa = \xi^i \pi_i - \xi^{\hat{t}} \varepsilon$$
 $K^i = \frac{\varepsilon}{2} \xi^i - \frac{1}{8\pi G} \left(\xi^j * \Psi^i_{\ j} + \xi^{\hat{t}} * \chi^i \right)$

magnetic
$$\kappa = \xi^i \psi_i - \xi^{\hat{t}} c$$
 $K^i = \frac{c}{2} \xi^i - \xi^j \Psi^i_{\ j} - \xi^{\hat{t}} \chi^i$

Self-dual
$$\kappa = \xi^i \chi_i$$
 $K^i = -\xi^j X^i_j$

 $c, \psi_i, \chi_i, \Psi_{ij}, X_{ij}$ – Carrollian Cotton tensors

 ε – Bondi mass aspect

 π_i – angular momentum aspect

COMPARISON: BMS STANDARD APPROACH [SEE E.G. L. DONNAY' TALK]

 $Q_{\xi} \sim \int_{S^2} \mathrm{d}z \wedge \mathrm{d}ar{z} \left(2\mathcal{M}\mathcal{T} + \mathcal{N}ar{\mathcal{Y}} + ar{\mathcal{N}}\mathcal{Y}
ight)
ightarrow ext{electric tower}$

In summary for n = 4

MAIN MESSAGES

- Bulk Ricci-flatness ↔ boundary covariant Carrollian dynamics with infinite number of fields
- Conformal Carrollian isometry: BMS₄ infinite and matches the asymptotic bulk symmetries
- Multiple infinite towers of not-always-conserved charges electric vs. magnetic

I

Pirsa: 22100029 Page 27/28

QUOTABLE FACTS

- The boundary Cotton appears everywhere AdS, flat, leading, subleading ...
 - in the bulk metric expansion
 - in the evolution equations (flux balance)
- Origin: expansion of the bulk Weyl
- Application: infinite towers of magnetic charges

FURTHER INVESTIGATION

- Further comparison with bulk approaches for towers of charges [Godazgar, Godazgar, Pope '18–21; see also A. Seraj' talk]
- Transverse (cross-tower) symmetry properties [Freidel et al.]
- Analysis of electric-magnetic (self-)duality properties tuning the bulk Weyl, Ehlers' $SL(2,\mathbb{R})$ [Mittal, Petropoulos, Rivera, Vilatte]
- Search for possible role in flat₄/CCFT₃ holography or in its flat₄/CFT₂ celestial emanation

Pirsa: 22100029 Page 28/28