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Abstract: | will review the recent construction of an extended solution space for gravity, based on a so-called partial Bondi gauge fixing. This aims
at investigating the possible relaxations of the boundary conditions, in order to include for example a cosmological constant, a polyhomogeneous
expansion, and an arbitrary time-dependent boundary metric. |1 will aso explain how to properly map these results to the Newman-Penrose
formalism. Finally, | will discuss the application to three-dimensional gravity, where a new asymptotic symmetry can be revealed after working out
all the subtleties of the covariant phase space formalism.
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Introduction

Motivations

* Symmetries are a precious tool to understand classical and quantum gravity

* Many symmetry groups have been studied: BMS, EBMS, GBMS, BMSW, ABMS, UGS, ...
What Is the largest symmetry group in gravity?

How much “structure” show we relax and allow for in the solution space?

What is the subleading / overleading structure?

Our goal

» Construct a framework including A # 0, time-dependent boundary sources, and log terms

» Unify and build up on [Barnich, Troessaert] [Compére, Fiorucci, Ruzziconi] [Mao]

|NHIT UL, | QO
L 11

* Revisit the construction of the Newman—Unti gauge [E
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Partial Bondi gauge
* Pick Bondi coordinates (u,r, r“‘) and impose the three conditions gr» = 0 = g4 to get

r

ds~ 28 du? — 2¢2Bdudr + JARB (d.}:‘q — o d-u.) (d;BB — UBd-u.)
= , ,

* There is still a freedom In redefining the radial coordinate

» For the transverse metric we assume [Chrusciel, MacCallum, Singleton] [Winicour]

0 o l ? Loy
gaB =7°qaB +1CaB + Dap + = (EAB + (In ?‘)Eﬁm) e

* We'll let the Einstein equations decide from here on, and complete the gauge fixing later

Bondi-Sachs gauge

« Algebraic condition det g4 g = r2 det ¢4 5 [BMS]

» Differential condition 9,-(r~*det g45) = 0 allows for Weyl rescalings [Barnich
» These conditions imply in particular C' = ¢3BC4p5 =0

* r is the luminosity distance
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Partial Bondi gauge
* Pick Bondi coordinates (u,r, r“‘) and impose the three conditions gr» = 0 = g4 to get

ds? = e*f _du? — 2e2Bdudr + JARB (d:.r:‘q o d-u.) (d;BB — UBd-u.)
= , ,

* There is still a freedom In redefining the radial coordinate
» For the transverse metric we assume [Chrusciel, MacCallun

0 o l ? 5y
gaB =7°qaB +1CaB + Dap + = (EAB + (In ?‘)Eﬁm) S ]

* We'll let the Einstein equations decide from here on, and complete the gauge fixing later

Bondi—Sachs gauge

« Algebraic condition det g4 g = r2 det ¢4 5 [BMS]

» Differential condition 9, (r~*det g45) = 0 allows for Weyl rescalings [Barnich
» These conditions imply in particular C' = ¢4BC4p =0

* r Is the luminosity distance

Newman—-Unti gauge
» Algebraic condition $ = 0 [Newman, Unti]

» Differential condition 9,3 = 0 allows for free boundary metric [MG, Zwikel]

Pirsa: 22100017 Page 4/20



Partial Bondi gauge
* Pick Bondi coordinates (u,r, r“‘) and impose the three conditions gr» = 0 = g, 4 to get

-

ds~ 28~ du? — 2¢2Bdudr + JAB (d.I?A o d-u.) (d;BB — UBd-u.)
- , ,

* There is still a freedom In redefining the radial coordinate
» For the transverse metric we assume [Chrusciel, MacCallum, Singleton] [Winicour]

0 o l ? ey
gaB =7°qaB +1CaB + Dap + = (EAB + (In ?‘)Eﬁm) e ]

* We'll let the Einstein equations decide from here on, and complete the gauge fixing later

Bondi—Sachs gauge

» Algebraic condition det g4 p = 12 det qu IBMS]

» Differential condition 9, (r—*det g45) = 0 allows for Weyl rescalings [Barnich
» These conditions imply in particular C' = ¢4BC4p =0

* r Is the luminosity distance

Newman—Unti gauge

» Algebraic condition $ = 0 [Newman, Unti]

» Differential condition 9,3 = 0 allows for free boundary metric [MG, Zwikel]
» The trace C is free

* r is the affine parameter for O,
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Solution space
Solving the Einstein equations

* We solve E,,, = G + 6Ag,, = 0 following the Bondi hierarchy

* Err = B =0+ == (CapC?® —4D) + O(r®)

3272

e b EEREEES i : o ; 3 e
Eex = Ul=pd o "L 1 ?) S (\ A + (In r)e2foDp .CAB) + O

i B !/ T

¥ 1 ™
with £4p5 = Diap) — EGC'(AB)

Ery = V =Ae?Pord 142 (;\egﬁoc — Setwiife — P [,rg‘) +rVi +2M + O~ Y)

E(AB) ‘C)( o = Ae2Po C"(AB) = (du — Oy In \/5) gAB + D(AU%)

E ap) ‘c’)(-r“} = A a—1 no logs in (A)dS

Eumlop-1) > fas=(.)

E{,.—KB') ‘C)H‘_i‘_: auEAB = ( ; )

n>2 c ot 5 :
E(4B)|o(m—n Ny = Gug bl ) finite data in (A)dS

E“---*‘c;)( r—2) OuNag = (...)

Euulpp-2 OuM = (...)

ol
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Solution space

Summary
* The solution space contains

cosmological constant A

= 2Ae*Pody? + GAB (d;r,A — U(‘j'i) (d;r.B - UﬁB)

boundary sources entering ds? T
time dependency Juqga B
logarithmic terms

trace mode C' (differentiating the BS and NU gauges)

* To write the EOMs it iIs more efficient to switch to Newman—Penrose
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Newman—Penrose formalism

Weyl scalars

» Usually the NP formalism is set in NU gauge (so that ¢ = @ = k = 0), but this is not necessary

* Projecting the Weyl tensor gives

Inir

T —F; AB) mAmP + —55‘,-.13?'11."1?1’1.8 + O(?‘_(’)
Pt (AL 7o i

.
Py = TL',U}} m’
=

lIJ f (55 B @

; il 7
Uy = 7-1D ﬁﬁ_”;m’s‘ + —_173‘4?71,‘4 + O(-r—5)
£

. /

1 = ,
Ty = 5 (M+iM) + 07
-

1 iy
Uy = —JAm4 +0O(r73)
=

1 _. ; :
Uy = NapmimP + O(r~2)
=

» Peeling broken: log-asymptotic flatness [Christodoulou,
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Newman—Penrose formalism
Weyl scalars

» Usually the NP formalism is set in NU gauge (so that ¢ = 7 = k = 0), but this is not necessary
* Projecting the Weyl tensor gives

Inr 1
Lagm’ AmB 4 2 E<43>m AmB 4 —p 1Bfm -I-O(?
i g

ln T

r1 — DPg,4pm* T 731?"”» +O(r™®)
E(M +iM) + O(r-*")
%MqumA,m_B +O(r-2)

» Peeling broken: log-asymptotic flatness |

» The “covariant functionals” are e.g. (turnlng off the boundary metric for simplicity)

= 4 1 Bl 1 Al - A :‘
EaB = E(AB) — EE§‘43> — gC-L,—;B + EC(AB) ((.-C'DC-'CD - -‘1[))

| A
A= M + E (_811. + (rju In \/a) (-lD o C-*ABC-*AB) =+ I (E{ N iE)
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Newman—Penrose formalism
Weyl scalars

» Usually the NP formalism is set in NU gauge (so that ¢ = 7 = k = 0), but this is not necessary
* Projecting the Weyl tensor gives
Inr 1
Lagm’ AmB 4 E<43>m ApB —p 1Bfm B Ofr™
rJ s
ln r

r1 DB.‘fme Jr le + O(r~ )

2 (MM + O(r“'l)

T g

1 4. g

F—QJ ma + O> ")

1 r : 2 3
Uy = ~Napm?mP + 0(r~2)

-

* Peeling broken: log-asymptotic flatness | Kel nan

» The “covariant functionals” are e.g. (turnlng off the boundary metric for simplicity)

e 4 1 L 1 Al - A ) :‘
EaB = E(AB) — EE§‘43> — gC-L,—;B + EC(AB) ((.-C'DC-'CD - -‘1[))

) A
A = M + E (_811. I (rju In \/a) (-lD e C-*ABC-*AB) =+ I (E{ — iE)

» Shear-free gravitational radiation is allowed since N 4 g 2 5 # 0
AB=
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Newman—Penrose formalism

Evolution equations from the Bianchi identities
* ForA=0

1 _ 1 A)
OuM = -DaT* + L CapN*P

- AT gy 1 s <
3uPa = OaM + O4M + Ciapy TP + 3JDB (8uIn\/gLaR)

i ) 3 R . | e e e "
Qe 45 — SD<A,PB> - EC@.-;B)MC + ngAB)du In\/q — 7 (C-du In\/q + 26,C + .BR) L£aB

* log terms should therefore modify the sub-leading and sub-sub-leading soft theorems

* For A # 0 (no analogue of Bondi mass loss)

: 3 5 ) i f e o
0uM = D4 (J* —AP?) + —CM + 7CaB (NP rydeiny

Pirsa: 22100017 Page 11/20



Pirsa: 22100017

Symplectic structure
Symplectic renormalization

» r-divergency of the charges can be cured by symplectic renormalization

» Always possible with a corner term since

6L ~ df = 8,0" + 8,6" + D464 0%, ~ 6L — D04 — 8,6

A = 0 potential

* Flat imit is well-defined, no corner term needed contrary to [Compére

» For example in NU gauge, keeping only C' and g4 free we get

or . =./a [‘ZNA ICAB) — 5qA8 (Clap) R = 2DaDCipcy + DadpC) + mc"]
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Symplectic structure

Symplectic renormalization

» r-divergency of the charges can be cured by symplectic renormalization

[Compere Marolf Papad Friol Skenderis BRiar
I\ mpere VidlrOll, dpadlmitriou, yKenderls, Blanchl

» Always possible with a corner term since
OL ~ df = 98" + 90" + D204 0%, ~ 6L — D404 — 8,6
A = 0 potential

* Flat imit is well-defined, no corner term needed contrary to [Compére

» For example in NU gauge, keeping only C' and gap free we get
Ofinite = V4 [QNABCW'(AB) —5g o (CQAB)R o QDADCC'<BC> + DAE)BC) + RéC]

* The newsis Nap = 0uCiap) = 87 Nap (the shear of ingoing n)
A # 0 potential

I :
* We need to replace everywhere C(AB> — x (i‘).u — Oy In \/Q)QAB

4

» Recalling that Sag := Nag + A%2E4p, we find e.g. the potential for A-BMSW

. 5 o ‘ S .
Hfi;inite = —_\/aq;iBOS;lB 4 5\/?1 (QM + KDQdU In \/&)
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Asymptotic symmetries

Asymptotic Killing vectors
» As usual, preserving grr = 0 = g4 glves

gu - f(\u, ;I’;A)

* Preserving the expansion of g4 g leads to

& =rel, + €+ 5—1 - = (Eo (Inr)egy ) +O(r =)

* To determine the free functions in £ we need to reduce the partial Bondi gauge to BS or NU
- T i\ .
£I|BS = 2(?1? u,z°) — fOuIn /g + Uldif) -e“dﬁ (4(() Bo)(Baf)+D 84 f ) +0(r Y

& ‘NU 2 |Bs+!‘ e

* The algebra is (diff(Z*)d-Rp) ¢ Ry,

Transformation laws
» Weyl d¢4/q =2h + DY A
e Translations

(0¢Cag) ‘NU = (0¢CaB) ‘BS +2kqaB

O £) 1 P 1 4 ¢ ~
= ( fou+ £y —h+ SfouIn 3 - U0, f) C + 4k

* Explicitly (legally?) used in [Barnich, Lambert] [Blanchet, Compére, Faye, Oliveri
» We can go further in 3d [MG, Goeller, Zwikel]
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Gauge choice
» Partial Bondi gauge

&

ds® = €% — du® — 2¢?P dudr + r*W(d¢ — U du)?
T

» Differential NU gauge
el = b= & — iy (u, gD) oW £ 0

Solution space
* Exact solution to Ry + 2Aguy =0

U=Uy+

m (2(? o 2(41),@6 — N)

V' = lengthy function of (M, N, C, Uy, Bo, po)

* The (uu) and (u¢) Einstein equations determine the evolution 9, M and d, N
* The function C'(u, ¢) 1s the exact analogue of the trace C' in 4d
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Asymptotic symmetries
» Generated by four functions (f, g, h, k) of (u, ¢)
. ,2(Bo—¥o0) :
gu=f =g ———0—f & =rh+k+0(r")
O

* (f,g,h, k) are supertranslations, superrotations, Weyl rescalings, and radial translations
* In particular we have

On(gu)| 74 = h(gu)| 7+ 5¢C = f0,C + gC' + k
* The algebra is

(diff(ZT)aRy) D Ry,

Corner terms

» We are interested in the algebra of integrable charges (topological theory), which here requires
symplectic renormalization with a corner term Yen = re¥04 3,
use of a corner ambiguity ¥ = —e¥0Cd30
use of an integrable slicing [Adami, Ruzziconi, Sheikh-Jabbari, Taghiloo, Yavartanoo, Zwikel]

* The corner terms needed for this procedure are encoded in the relative corner term

: . . . i :
f)EH/EC i C?'-jke;’JeJaéea = Uren + Uc

1, Franzet
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Asymptotic symmetries
» Generated by four functions (f, g, h, k) of (u, ¢)

e2(Bo—o)

& g & =rh+k+0(r 1)

* (f,g,h, k) are supertranslations, superrotations, Weyl rescalings, and radial translations
* In particular we have

On (Quu) e h(guu)\z+ (550 = fO,.C + gC," + k

* The algebra iIs

(diff(ZT)aRy) ® Ry,

Corner terms

» We are interested in the algebra of integrable charges (topological theory), which here requires
symplectic renormalization with a corner term Yen = re¥04 3,
use of a corner ambiguity -19C = —e¥PoCH30
use of an integrable slicing [/ i, Ruzziconi, Sheikh-Jabbari, Taghiloo, Yavartanoo, Zwikell

* The corner terms needed for this procedure are encoded in the relatlve corner term
'l)EH/EC = L?JLL rCJaCS(’ = ?_L)ren -+ 'Igc
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Properties of the charge

The final charge is given in terms of the covariant mass and angular momentum by
Q= ?g M+ gN + hC + ke¥0
J S

» As expected in 3d these charges are r-independent
* Non-conserved because “leaky boundary conditions” (unless we take Uy = 8y = ¢p = 0)
* The algebra at every u Is

{Q[&1], Ql2]} = Qlé1, &« +% f195" — fag?’ —}/‘ hiky — hoky
& 5

S

: A—0 :
vit @ virt @ Heisenberg — bmss @ Helsenberg

» The Heisenberg component can be removed with a corner term ¥ = C'ée¥0

TMG
» 3d massive gravity by adding a Chern—Simons term for I'[g]

Ltme = Lenlg] + Lcs[T]

* Weyl component in TMG cannot be removed by a corner

pleton|
]

L=eAF+4+eNeNe+eNndye+ Leg|w]

QTMG = §£ AN + gM + he
Js

» Dualities in 4d should also be interesting with respect to these extra boundary structures

11:/:12
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We have seen that

* A complete solution space can be derived in partial Bondi gauge (with A, 9.+/q. sources, logs)
» This extends to 4d the construction which can be carried out from A to Z in 3d

» Lots of extra structure to play with

Interesting prospects
Charge algebra in partial Bondi gauge [MG, Zwikel, wip]
Detailed logarithmic structure and log charges [MG, Zwikel, wip]
Relationship with log soft theorems [Campiglia, Laddha, Sah

Implications for celestial and Carrolian holography

T r 1 D 1
[1 et et av Pasters}

Coupling to matter [MG, Majun

(A)dS radiation and memory effects

Breathing memory and scalar tensor theories [Sera)
Further relaxations of the gauge (in particular g, 1)

poleonl. Cilambelll ) Nt Narteau Petkou ropoulos KRuzziconl
| \=alTIpoIConi 1aimpcC | v/cirante, iviartcau CLKROU, FCLropoulos, r~ COl
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Asymptotic symmetries
» Generated by four functions (f, g, h, k) of (u, ¢)
. ,2(Bo—¥o0) :
gu=f =g ———0—f & =rh+k+0(r")
O

* (f,g,h, k) are supertranslations, superrotations, Weyl rescalings, and radial translations
* In particular we have

Sn(guv) L= h(guv) T+ 3:C = f0,C + gt ik
* The algebra is

(diff(ZT)aRy) D Ry,

Corner terms

» We are interested in the algebra of integrable charges (topological theory), which here requires
symplectic renormalization with a corner term Yen = re¥04 3,
use of a corner ambiguity ¥ = —e¥0Cd30
use of an integrable slicing [Adami, Ruzziconi, Sheikh-Jabbari, Taghiloo, Yavartanoo, Z

* The corner terms needed for this procedure are encoded in the relative corner term

; N o . i E
f)EH/EC = C?'-jke;’JeJaéea = Uren + Uc

MG, Pranzetti] (with a minus sign!)
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