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Abstract: The phase space of gravity restricted to a subregion bounded by a codimension-2 corner possesses an infinite-dimensional symmetry
algebra consisting of diffeomorphisms of the 2-sphere and local SL(2,R) transformations of the normal planes. | will describe a deformation of a
subalgebra preserving an area form on the sphere, and show that it leads to the finite dimensional algebra SU(N,N), reminiscent of older results
concerning the fuzzy sphere, in which area-preserving diffeomorphisms are deformed to SU(N). This deformation is conjectured to be relevant to
the quantization of the local gravitational phase space, and | will further demonstrate that the representation of SU(N,N) appearing in the
guantization can be determined by matching the Casimir operators of the deformed algebra to classical phase space invariants. Based on
2012.10367 and upcoming work with W. Donnelly, L. Freidel, and S.F. Moosavian.
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Boundary charges in gravity

In gravity, diffeomorphisms are pure gauge, but in the presence of
boundaries become physical symmetries with nontrivial charges.
Classical applications:

» Quasilocal energy for subregions

» Global charges (ADM mass, BMS charges) for asymptotic
boundaries

» Brown-York stress tensor and applications to holography

Quantum gravity applications:

» Hilbert space factorization:
Hphys # Hy @ Hy, due to gauge constraints. Adding
boundary charges restores factorization.

» Relevance to entanglement entropy in gravity:
extended Hilbert space entropy formula [ponneiy 2012
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Surface-preserving charges

Charges for diffeomorphisms preserving
codimension-2 surface S = 0%

[Donnelly, Freidel 2016; AJS 2017]

Universal symmetry group: Diff(S) x SL(2,R)
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)=

Diff(S) SL(2,R)
Charge: generalization of Charge: local area element
angular momentum
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Classification of invariants

Characterize representations using coadjoint orbits
parallels classification of Poincaré reps [ponnely, Freidel, Moosavian, AJS 2020]

Group
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Matrix Regularization

Regularized algebra:

» Expect quantum effects to deform the algebra if a
deformation exists

» Regulated symmetry algebra needed in entanglement entropy
computation (e.g. lattice regulator for Maxwell theory)

Planckian fuzziness expected from quantum gravity effects

Practical motivation: representation theory for continuum
algebra is not well-developed
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Matrix Regularization

Regularized algebra:

» Expect quantum effects to deform the algebra if a
deformation exists

» Regulated symmetry algebra needed in entanglement entropy
computation (e.g. lattice regulator for Maxwell theory)

» Planckian fuzziness expected from quantum gravity effects

» Practical motivation: representation theory for continuum
algebra is not well-developed

Will identify a deformation of the area-preserving subaglebra
SDIff(S) x SL(2,R)°, and sketch how to utilize the representation
theory of the deformed algebra in the quantization of the classical
phase space.
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Fuzzy Sphere

Deformation motivated by the fuzzy sphere

[Hoppe 1989; Pope, Stelle 1989; Madore 1992]
S? is a phase space with symmetry algebra s0iff(.5%). In the

spherical harmonic basis Y,, a = (A, a), structure constants are

YoYp =B,

e, Y= 6 Y

~

Quantization sends each harmonic to an N x N matrix [Ya]_ij

Commutators of Y,, generate su(N) Lie algebra

StI’UCtU re constants [Freidel, Krasnov 2002; Alekseev, Recknagel, Schomerus 1999]
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Fuzzy Sphere

Using an asymptotic expansion of 67-symbol (nemur 1959, can show

- 1 5
A'faﬂ"y — Liafy =+ ﬁccxﬂ")’ = O(N H)

Hence, matrix product gives the expected form of a Moyal product
with b = A%

Subleading terms in the 6j-symbol expansion give the expected
corrections in the Moyal product.
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Fuzzy Sphere

Using an asymptotic expansion of 67-symbol (nemur 1959, can show

- 1 5
A'faﬂ"y — Liafy =+ ﬁccxﬂ")’ = O(N H)

Hence, matrix product gives the expected form of a Moyal product

with b = A%

Subleading terms in the 6j-symbol expansion give the expected
corrections in the Moyal product.

Conclusion: Structure constants for su(/N) in spherical harmonic
basis approach those of s0iff(.S) as N — oc;
> s0iff(S) admits a deformation to su(N)
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SDiff(S) x SL(2,R)® and SU(N, N)

Gravitational algebra siff(S) @, sl(2,R)” contains additional

generators Y,, = 7, ® Y,, — sl(2,R)-valued functions.

Lie bracket computed pointwise:
Yoo Yop] = 60V
Ansatz: Obtain deformed algebra by promoting Y,, to a fuzzy

spherical harmonic: Y, = 7, ® Yo, 2N x 2N matrix.

Matrix commutators found to be

A
>

Af' A,f L c Lo Y

which approach the classical structure constants above.
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SDiff(S) x SL(2,R)® and SU(N, N)

Gravitational algebra siff(S) @, sl(2,R)” contains additional

>

generators Y,, = 7, ® Y,, — sl(2,R)-valued functions.

Lie bracket computed pointwise:
Yoo Yop] = 60V
Ansatz: Obtain deformed algebra by promoting Y,, to a fuzzy

spherical harmonic: Y, = 7, ® Yo, 2N x 2N matrix.

Matrix commutators found to be

A
>

Af' A,f L c Lo Y

which approach the classical structure constants above.

Additional generators Yo, = 15 ® Y, generate an su(N) algebra,
which was shown to approach sdiff(.S).
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Quantization and Casimir matching

Hamiltonians (J,, Nyo) generate the classical symmetry algebra on
phase space via Poisson brackets.

Quantization replaces these with operators (ja,Naa) on a Hilbert
space which furnish a unitary representation of the deformed
symmetry algebra.

Commutators depend only on the algebra via the relation
[, ] = ih{-,-} + O(A%)

Full operator product depends on the choice of representation.
Constrained by matching to the classical abelian product:

Jads = Juds + O(R)

Simplest in practice to impose this relation on Casimir operators to
determine the representation and deformation parameter V.
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Casimir matching for SU(N)

Classical generators

' ]a A ( A wo

~ 167G \ 4r

Classical Casimirs (enstrophies)

A \F Awyg s
Cr = (167rG) ( Arr ) ,/S""U ( ;

Deformed Casimirs

1 AN\ *
Ck = (7) Nk-ICk(R)

where ¢, (R) is the standard expression for su(/N) Casimirs in the
representation R.
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Casimir matching for SU(N)

Classical generators

Jo

B A 14’w()
167G \ 4«

Classical Casimirs (enstrophies)

A \F Awyg s
Cr = (167rG) ( Arr ) ,/S""U ( ;

Deformed Casimirs

1 AN\ *
Ck = (7) Nk-ICk(R)

where ¢, (R) is the standard expression for su(/N) Casimirs in the
representation R.

Large N scaling ¢, (R) ~ N*¥1n, n = #Young diagram boxes,
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Casimir matching for SU(N, N)

Classical charges

@:/mmx A%z/m%%
S JS

Classical Casimir invariants

c%afmmww
j

Ik St
Cota =/Vo (ND)* (2k+1)J + kB NN, N°})
5‘
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Casimir matching for SU(N, N)

Classical charges

@:/mmx A%z/m%%
S JS

Classical Casimir invariants
c%afmmww
g
:/1/0 (N2 ((2A7+1).]+ki$—be“{Nb,NC})
S 0

Match to corresponding su(/N, N) Casimirs

hEkJrlNZ'kt

égk+1 — 9 C2k+1(R)

More detailed matching involves study of unireps of su(N, N)
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Conclusion and future work

Summary:
Exhibited deformations symmetry groups appearing in gravitational
phase space

» SDiff(S) «— SU(N)
» SDiff(S) x SL(2,R)® <— SU(N,N)
» SDIff(S) x R® «— SL(N,C) xR
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Conclusion and future work

Summary:
Exhibited deformations symmetry groups appearing in gravitational
phase space

» SDiff(S) «— SU(N)
» SDiff(S) x SL(2,R)® <— SU(N,N)
» SDIff(S) x R® «— SL(N,C) xR

Future Work:

More detailed Casimir matching for SU(N), relate Young
diagram shape to outer curvature function W

Explore effects of different surface topologies (e.g. torus)
Examine representations of SU(N, N) for detailed Casimir
matching to SDiff(S) x SL(2,R)® invariants

Explore deformations of full algebra Diff(S) x SL(2,R)”,
extended algebras Diff(S) x (SL(2,R) x R?)®

Ultimately understand entropy in gravity from study of
deformed symmetry representations
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