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Abstract: The 6d N = (2,0) theories are superconformal field theories believed to describe the low-energy dynamics of N coincident M5-branes.
These theories don't have a known lagrangian description and remain largely mysterious, so it is an interesting question how one might calculate
observables there. An exciting prospect is to use the analytical conformal bootstrap, which offers away to systematically calculate 1/N corrections
at large N. In thistalk | will present the bootstrap approach to a case study, that of calculating the 2-point function of stress tensors in the presence of
a surface defect. This setup turns out to be remarkably ssimple and helps us address some technical issues faced in similar calculations, notably we
can derive a supersymmetric inversion formula and check crossing symmetry explicitly. | will also comment on the interpretation of our result in the
context of holography, of the chiral algebra construction of Beem et al. and on what it can reveal about the interactions between M2 and M 5-branes.

Zoom link: https://pitp.zoom.us/j/926319301652pwd=Qm9IM QzINdHOOWGJINUZBUV NaOXZxZz09
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The 6d N = (2,0) theories are interacting SCFTs with

no known lagrangian description
no tunable coupling constant

maximal supersymmetry in 6d

Do they really exist? string/M-theory constructions
How do we define them?

How do we calculate observables?
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There are good reasons to study them.

From the point of view of QFT, they

e challenge the usual framework of perturbative QFT
e maximal dimension for any SCFT

e play a role in understanding dualities in lower dimensional theories
In string/M-theory,

e describe the low-energy dynamics of N Mb-branes

e also interactions with M M2-branes
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The holographic approach

In the past the 6d theories have been studied via holography.

At large N they are described by 11d supergravity on a AdS; x S*
background, with the radius of AdS (in Planck units)

Raas \° 8N
= |

At subleading orders in N, calculating observables require M-theory

corrections to 11d supergravity.

This is an open problem.
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The bootstrap approach

The modern approach is to use bootstrap techniques at large N to
calculate 1/N corrections.

In this talk, | discuss the 2-point function of stress tensor superprimaries
O, in the presence of a surface operator V

(O2(x1)O02(x2) V) .

Natural choice because

e Simple yet nontrivial setup
e Captures interesting physics

e The result overlaps with supergravity and chiral algebras
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Plan of the talk

Qverview

Review of anomaly coefficients
Setup and kinematics
Large N expansion

The result

The bootstrap approach

Bootstrapping holographic correlators

A supersymmetric inversion formula

Crossing symmetry

Conclusion
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Review of anomaly coefficients

The bootstrap result is naturally expressed in terms ¢, d:

e cappearsin (TT) and (TTT)

e it depends only on N (in general, the choice of ADE group)

e d appears in (TV)

e it depends on M, N (in general, the choice of rep. of ADE group)

They also appear in conformal anomalies and are known exactly

c=4N3—-3N -1, d_M(N_I;/(VMJ“zN).

At large N, ¢ ~ N3 and d ~ MN.
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05 is the superprimary of the stress tensor multiplet. It transforms in 14
of s0(5) R-symmetry. | use the notation

Oa(x, u) = O (x)uy uy, ,

Surface operators V' break
e conformal symmetry: s50(2,6) — s50(2,2) @ s0(4)
e R-symmetry: so(5) — so(4)

Therefore O, can acquire a vev

(Oa(x,u)V) = _ 4 |ui

C1/2 ‘XJ_‘4 ’
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The 2-point function takes the form

<O2(X15U1)O2(X2qU2) V> ‘Uz ZF Z Z

\X [4]x5" |
where

® . Z are cross-ratios

e 0= 7|ui1\'|t;2¢l enumerates R-symmetry invariants
| 2

Our goal is to calculate
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The cross-ratios admit a geometric interpretation

A
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Figure 1: Cross-ratios in Lorentzian kinematics

10
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Superconformal Ward identities

Supersymmetry imposes:
(a0 1 P(Zz2 ) = =0 (05 + 0,)F(z,2,¢

F can be expressed in terms of Fy and ( as

71‘2

|z-wPz—w

FZZ )= F(z.z)

|z — 1f*

Z(z —w)(z— w ) (w—1)2
B w(z—2)(z—-2z"1)(z - 1)? C(z) treie.

((z) appears because a sector of the theory is governed by a 2d chiral
algebra
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Large N expansion

Finally, at large N F admits an expansion of the form

(z2)*(1 — w)* de d

E(2)2 )= E S AL 8- [

1-20%1-2)%2 ¢ ¢

which can be understood in terms of Witten diagrams

O, O,

OQV OQV

Figure 2: Witten diagrams at large N
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We will obtain
a0
g ( ) o (1 _ 2)2 ’
T (1 +zZ + (22)2)
(1-2zz)°

F(l)(z,i) =

[2(1+ 182z + (22)%) — (z+ 2) (1 + zZ)]

(22)2 log zz i i o
6 i) [(1 + zZ) (3 + 4zZ + 3(z2) )

+2(z+2) (1 + 32z + (22)?)] .
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Superblock decomposition

We impose associativity of the OPE

Z (=)
= (1 (ZZZ))4((1 - §;4w2 1 -+ Z ngkAka(z,E,w)
k

G,G are resp. bulk and defect channel superconformal blocks.

B appears in

OV ~ Z B (... kinematics...) V[O]].
I

Solving these equations is difficult.
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At large N F) can be reconstructed from a few blocks:

1. A correlator is fixed in term of its discontinuity

2. The discontinuity can be calculated from the bulk channel OPE. It
receives contributions from blocks with

e Anomalous dimensions

e Low enough twist

3. At large N, blocks with anomalous dimensions are suppressed by
¢~ 1, so Disc F(I) only receives contributions from blocks with low
twists.

There are 3 problems:

1. R-symmetry?
2. not manifestly supersymmetric

3. misses some low spin contributions to the correlator

15
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A supersymmetric inversion formula

We can solve these issues by deriving a supersymmetric inversion formula.
Start with the usual inversion formula

b(A,s) ~ /(12(12;,1.(2.Z)g&5(z.2) Disc H(z, z).

R-symmetry
Defect operators @ transform under 50(4) R-symmetry with spin r, and
the R-symmetry block is

Using orthogonality of Chebyshev polynomials, we can decompose F in
R-symmetry channels.
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A supersymmetric inversion formula
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Supersymmetry
The superblocks that can appear in the OPE are

~

Multiplet | A

L[O] A . A>2-+1s
Alrls A=2+4s5+2r
Blr] A =2r

Table 1: Defect supermultiplets and their dimensions

Each block with r = 2 appears in a single superblock, and B is
proportional to its coefficient b

A

Gaj,1] = Z BAsr=28401+8510+ + 86,0,1 + &6,2,1 + £7,1,0 -

So we can calculate B from the r = 2 channel only.

17
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We obtain

A B2
B(A,s) ~ /(12(12;1’(2,2) Disc(F(z,2),{(2)) = » ﬁ'

Low-spins
Not completely fixed, but as we will see this formula only misses two

superblocks!

(In constrast, the “bosonic” inversion formula requires adding an infinite
number of blocks to recover the correlator)

Supersymmetry helps because the analyticity in spins constrains the block
with highest spin of any superconformal block.

18
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Calculating the discontinuity

We're ready to calculate the discontinuity and reconstruct the correlator.
The bulk operators which contribute to the OPE are

D[2,0] x D[2,0] =1 + D[2,0] + D[4,0] + D[0, 4]

+ > B[2,0]; + B[0,2] 141
I=0:25

+Y L[0,0]a,-

Multiplet A Comment
1 0 identity
D[2,0] 4
D[4, 0] 8
B[2,0], 8+ 1/
L[0,0]a;s | A > 6+ | long multiplets

stress tensor

Table 2: Bulk supermultiplets and their dimension
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The only superblocks that contribute to the discontinuity are 1 and
D[2,0]. The bulk identity gives rise to the leading term in the correlator

(z2)?(1 — w)*
(1 —2)*(1 - z)%w?

D[2,0] gives rise to F(1). Its superblock is

1222 [ 11+ =
1+ =

CD[ZO](Z) :_(1_—2)4 21_Z|OgZ] ’ FD[Q.Ol(Z.E):O.

20
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Calculating the discontinuity and using the supersymmetric inversion

formula, we find

= d?> d 4
Flz,z,1) = . Egs[l]
-+ Bg.ogﬁt?[?] + Z Bg-sgAA[lls—l g Z szn-sgAL[O]A.s ’

s>1 m>1

>0
where dimensions of long operators are

A d 12m(m+1)(m + 2)
Aps=2 2m— -\ 4 4= .
' T M s T T (s +1)(s +2m + 3)

and the OPE coefficients are

52 _25(m+1)(5+1)(m+5+2)(2m+5+3)
< m.s> o 6

d
B Czs—l(m+ 1)(5m° + m*(19 + 4s) + m(20 + 8s) +2(2 +5)) + ...

21
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Conclusion
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Crossing symmetry

We can check that the result satisfies crossing symmetry and admits a
bulk channel decomposition

zz7(1 — w)- : d
j ((1 = z()2(1 )E)2w> [1 — ZgD[Q_O] s (CA)O.OgD[4.O]

L
_Z Z(CA)O‘!QBP-O]IfQ + Z (CA)H.IgL[U.O]A,;L;

I>2 n,I>2

where / is even, A =8+ 2n+/ and

L (n+ D (n+1+2))(n+1+3)

(CAYn = (2n+1)Y(2n + 2/ 4 5)!
[i(sn:evenzn(/ +2)(2n+ 1 +5) - i (r 162(1 43_)4)! T
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We used bootstrap techniques to calculate FV). To do so we
obtained the relevant blocks and calculated the dCFT data
{B,(CA),A}.

Simpler setup than the Wilson line, which means we could derive a

supersymmetric inversion formula and check crossing symmetry.

We conjecture that ( is exact. To check.

Result for any representation with d < ¢1/2
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What happens when d ~ ¢'/2? Can we see the bubbling geometries?

Go to higher orders in N. Mellin space might be useful

For 4-point functions, Mellin amplitudes have a flat space limit
which calculates scattering in M-theory. Does it work for defects?

More general bulk operators?

Bootstrapping other setups?

Thank you for your attention
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