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Abstract: Superconductivity in electronic systems, where the non-interacting bandwidth for a set of isolated bands is small compared to the scale of
the interactions, is a non-perturbative problem. Here we present a theoretical framework for computing the electromagnetic response in the limit of
zero frequency and vanishing wavenumber for the interacting problem, which controls the superconducting phase stiffness, without resorting to any
mean-field approximation. Importantly, the contribution to the phase stiffness arises from (i) "~ integrating-out” the remote bands that couple to the
microscopic current operator, and (ii) the density-density interactions projected on to the isolated bands. We aso obtain the electromagnetic
response directly in the limit of an infinite gap to the remote bands, using the appropriate " projected” gauge-transformations. These results can be
used to obtain a conservative upper bound on the phase stiffness, and relatedly the superconducting transition temperature, with a few assumptions.
In a companion article, we apply this formalism to a host of topologically (non-)trivial ~flat-band" systems, including twisted bilayer graphene.

Zoom link: https://pitp.zoom.us/j/99631762791?pwd=dU4yaU1wK zINTisrazJjaUF20DIXUT09
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Superconductivity in moiré materials

» R,, (k) —

- Twisted bilayer graphene (cao, Y., Fatemi, V., sl IS
Fang, S. et al., Nature, 2018 ; Lu, X., Stepanoy, P., Yang, W. et
al., Nature, 2019; M. Yankowitz, S. Chen, H. Polshyn, et al., < 0.51
Science, 2019; Arora, H.S., Polski, R., Zhang, Y. et al., Nature, =
2020) o

- Alternating twist magic angle graphene 3 03]
(Hao, Z., Zimmerman, A.M. et al., Science, 2020) E 0

- Twisted trilayer graphene (park, ..M., Cao, Y., ‘
Watanabe, K. et al., Nature, 2021) 0.1 : -

-1.8 -1.6 -1.4 -12
""" Carrier density, n (10'? cm™)

(From Cao, Y., Fatemi, V., Fang, S. et al., Nature, 2018)
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Superconductivity in narrow bands
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Attempts in addressing the superfluid stiffness:
* mean-field (S. Poetta, P. Torma, 15’; X. Hu, et al. 19’; AJulkuy, et al., 20’; F. Xie et al., 20’; P. Torma, et al., 21’...)
* exact soluble models (K. Huhtinen, et al. 21’; J. Herzog-Arbeitman, et al., 22’...)

Challenge: strong coupling regime, BCS mean-field does not apply, lack of general formalism
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More general question: effective response

Say we would like to some properties of the superconductor, for example phase stiffness, which can be
related to the response function to external electromagnetic field.

Question: how to couple an effective theory to probe gauge field?

Why is this a non-trivial question?
* Conventionally, would like to perform Peierls’ substitution but for
interacting topological bands, there is no tight-binding model to begin with.

Even for trivial bands, the definition of Wannier orbitals has gauge
ambiguity but the physical observables should be gauge independent.

In this work: obtain the effective gauge coupling in the long wave length,
static limit without relying on tight-binding Hamiltonians.
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Outline

* Superfluid stiffness in terms of response functions
* Warm-up: multi-band free electron systems
* Result for interacting narrow band systems

* Example: trivial bands, LLL, TBG

0/ m®O
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Superfluid stiffness D;

* Superfluid stiffness can be related to transverse current

response in the following way:

D,
el
K, = O*H[A] . di tic t
(1] e 5A“5Au . diamagnetic term

Xzx (q, w) : current-current correlator
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= (K:m::> e X:z::z;(q:n = O; qu i O,UJ = 0) (Scalapino, White, Zhang, PRB 93’)

Since Xzz(q,w) >0,

D, < me* (K )

Page 7/22




Bound on superfluid stiffness
D, n

< (Kxa:> P E , for Galilean-invariant systems

Tel

L3

Electron mass (not a very useful bound for narrow band
systems)

On the other hand, since the gap is large, we expect effectively,

D DS e
(K X (w= g =0,,50) amd g < (KD

mTe?

%%
+O(K) terms

only involves d.o.f. within the narrow bands.
0/ mOO
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How to get the effective response functions?

Two approaches:

1. Start with a UV Hamiltonian including all the remote bands, couple to a
probing gauge field, then take band gap to infinity and keep the O(1) terms.

2. Start with the effective Hamiltonian, then couple to a probing gauge field&

X

Benchmark:
For band electrons (ignore interaction), one should expect,

n
(K;g) G ™, :effective mass , gives Drude weight.
gz
e/ mOO
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Warm-up: multi-band free electron systems
Hamiltonian: Hkin = Z ek,nczjnck,n n: band index
k,n

By definition, H[A] is obtained by letting

k

Chom — Z CRA A (@R ) U AT

n

* If we start with the effective Hamiltonian, for simplicity only one active band,

(Kor) = Z f(er) (ug|0F hiclug) = Z fer) [0k, €k — 2€k 920 (k)]

" ?7??
Drude weight

(If we start with the full Hamiltonian, we get the Drude weight as expected.)
e/ mO®O

9z (k) : quantum metric
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Warm-up: multi-band free electron systems

Why an extra piece proportional to quantum metric? Symptom of violation of unitarity.

Since the gauge transformation is not diagonal in the band basis, an infinitesimal gauge transformation
restricted to the active ands gives,

ck — PULckUnP = Ck+a<uk|uk+a>

Notaph;e, ‘(’U;k|uk+a>|2 ~]1— azgxm (k)

Q: What should one do to "couple effective thec;ry to a probing gauge field”?

0/ m®O
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Q: What should one do to couple effective
theory to a probing gauge field”?

Let us take a step back, and ask the following question:

Suppose we start with a UV Hamiltonian and calculate the superfluid stiffness,
what should we get if we let the band gap go to infinity at the end of the day?

By performing a perturbative expansion in terms of W/A , the terms that are

independent of the band gap should give the effective diamagnetic and
paramagnetic terms, namely K¢ and e

Fully filled
"ramote” band

v(E)

0/ m®O
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Setup

Let us consider a microscopic Hamiltonian of the system with density-density interaction,
H = Hkin e Hint

Hyin= Y teaw(r—r)clycrar —pN

! "
rrlo o

Hy = Z V(ir—r") n.n.
r, 1!
Let us resolve the Hamiltonian into its “diagonal" and ““off-diagonal" pieces, respectively,

LY

H=Hg+ Ho: [P is the projection operator to the sub-Hilbert space [Hl
H., =PHP H , spanned by the many-body states with partially
d + Q Q’ occupied active bands and fully occupied (empty) lower
H,=PHQ + QHP, energy (higher energy) remote bands.
0/ mO®O
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H=H;+H,,

Schrieffer-Wolff (SW) transformation s.—ese+ame

H, =PHQ + QHP,
* Without coupling to probing gauge field, the correction to Hy by H, is ~ VQ/A
And the effective Hamiltonian is therefore H.g = PHP

« Now let us consider H|A] , for a small A, we expand

1
H[A] = H]0] + J, A, + §KWA,,,A,, + ... = Hy4[A] + H,[A].

By performing a unitary transformation, that is SW transformation, we can block diagonalize H[A]
L3

H{A] = TWH[Ale™ T (m|T[A]ln) = (m|H,[Al[n)/(Em — Ex)
~ A

*  Why is this different from A = 0?
Ju(g, = 0) = —i [XH_H} so (Mg = 0)|n) = —i(En — Ep)(m|X,|n) ~ A

T[A] has pieces that are independent of Al
G/ mO®O
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Our results

* The effective Hamiltonian coupled to gauge field should be defined as,
H.q[A] = PH[A]P = Pe" Al H[Ale TP
1
i Heff o JZH:A[J, & iKnguAv + higher order terms in 2\

with .
Jzﬁ(q — 0) = PJu(q — O)P =) [PXuPa IEDI{intIED] (S. Sondhi and S. Kivelson, 92’)

Kef — [IPXIP, [PXIP, HHH

0/ m®O
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Diamagnetic term K

<K§fcf> - lima_}oag <eiaIF’XIPHde—iaIPf(IP>
= (KD2ve) 1 (XQXPH,P) + (PH,PXQX),

where (K¢ = lim,,_,002 (e'*X PH Pe~X).

what we would get starting with the projected Hamiltonian
Sanity check: free fermion with one active band, we get

PXQXP =23 f(en)ges(k) and  (K50) = f(er)OF, e
k

k
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Diamagnetic term K

i eff . : i S .
To be concrete, we can also write K., in terms of the fermion creation/annihilation operators for generic
Hamiltonian.

For simplicity, let us only write the formula for one active band. .
The contribution from interacting termis,

e 2
K ff lnt o Z V ck aCk1— QGCLQ BCk2+4q,8 )[DkLm +Dk2,m:| [(ukllukl-Q)(ukzyukzﬁ-q}]
QaklskE
Di, [(uk|ur—q)] = Ok, [(ur|ur—g)] + Z(-’flk,:r: — Ak g, )(Uk|ur—g)

Berry connection

ka : “covariant” derivative to keep the gauge invariance under |uk) =7 629’“ |uk)

0/ m®O
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Examples: trivial band

When Peierls’ substitution holds?

For the case of one active band, if it is trivial, we can always choose a gauge such that the Berry connection is zero.
This is equivalent to Wannier orbitals being maximally localized.

/_l' _'7:
Then we can simply perform the usual Peierls’ substitution in the tight-binding Hamiltonian dq‘,,a e dq;,aez "

to get the effective gauge coupling.

Note that the projected interaction also couples to the gauge field due to the spreading of the Wannier

function, for example, :

dl ol pd; pd; e — df L d] od; pd; €A ioing

Intuition: spreading of Wannier orbitals can enhance the coherence between pairs.

0/ m®O
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More Examples:

Lowest Landau level:

Twisted bilayer graphene:
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A bonus: partial f-sum rule

f i i : :
K3, is also related to integration of optical spectrum weight.

At temperature much smaller than band gap, we have,

71'82

Keff
< (ke

A
/ dw Re|oxx(qz: — 0,w)] =
0

This is a manifestation of an emergent U(1) symmetry of the system, that is the particle number
conservation of the active bands.
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Outlook

* We obtained a general formula for effective diamagnetic term. Still need to know
the ground state to determine the value of superfluid stiffness.

* The effective formula for superfluid stiffness is equivalent to viewing the gauge
field A as couple to the matter fields via ¢?4«PX«P instead of the usual gauge
transformation ¢*4«Xu . From the symmetry perspective, the charge of the
emergent symmetry is Q=Lﬁ(w). et AuPX.P can also be thought of as a gauge
transformation if we are to gauge the emergent U(1). We need to consider general
space-time dependent gauge field and we can get other response fUnctions.

0/ m®O
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