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Plan for these talks:

Lecture 1 (yesterday):

Overview of best current (lab) experiments and constraints

Lecture 2 (today):

New experimental techniques and frontiers in the coming years

D. Moore, Yale Perimeter, Sept 23, 2022
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Current experimental frontiers

» Last lecture we summarized the existing
constraints on gravity-like forces

» There are a number of new ideas to push
the sensitivity of experiments towards:

Space-based

1. Shorter Distances tests

Atom

Torsion interferometry
4~ palances

2. Smaller Masses

Quantum
tests

3. Shorter
distances

<+— Mossbauer

4. Quantum tests

» Many of the new techniques under
development are aimed at multiple frontiers

<. Levitated _»
systems

{

» The first tests of gravity between quantum
systems may also be on the horizon!

Smaller masses

D. Moore, Yale Perimeter, Sept 23, 2022
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Experimental Frontiers:

1. Shorter Distances

2. Smaller Masses
3. Higher Precision

4. Quantum tests

D. Moore, Yale Perimeter, Sept 23, 2022
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Shorter distances

« Torsion balances (Eot-Wash) have now pushed measurements of gravitational strength interactions down
to ~50 um distances

« Measurements are not limited by intrinsic sensitivity, but instead by backgrounds
* In particular, electrostatic “patch potentials” on shielding foil are extremely difficult to avoid

Constraints on short-range

A forces (Eot Wash): Cross-section of Eot Wash ISL Topography and surface
LUSH S AR A IR AR apparatus: potential for sputtered Au film:
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D. Moore, Yale Perimeter, Sept 23, 2022
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Levitated optomechanical systems

» New techniques using optically trapped particles (~100 nm to ~10 um silica spheres) are being developed
to probe shorter distances
» As with the torsion balance, existing systems are limited by backgrounds rather than sensitivity

« Patch potentials, vibrations, scattered trapping light, ...
« The key challenge is to design an attractor that modulates the mass at micron distances and is robust to
these backgrounds (“lock-in measurement”)

Northwestern (Geraci group): Stanford (Gratta group): Yale (Moore group):

y-Z microscope objective :
X Electrode Au shield spher|
4 Capillary / |
k Electrode g Droplet ‘
trap ¥ |
o B Fiber
for UVE 9.
k fr T
cool A mmata SRS S BN, S :
3 Levitated

: ball lens sphere (5 ng)

o ~ &z

https://journals.aps.org/prl/abstract/10.1103/PhysRevlett.105.101101

T Droplet monitoring fibers ™

2mm

Perimeter, Sept 23, 2022
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Control of backgrounds/noise ;
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Perimeter, Sept 23, 2022 7
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Current and future sensitivity (levitated systems)

» First gravity test with a levitated system was recently performed by Stanford group (see talk by Giorgio)

» Further reducing backgrounds may allow gravity-strength interactions to be measured down to ~1-10
micron distances

First results from Stanford and near term sensitivity:

1012,

S 1019

. Present noise limit
« Projected next run

108
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Strength parameter

104
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10°

102

Length scale, A [um]
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.L061101

D. Moore, Yale
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Casimir force

» Below ~micron distances, even a technically perfect experiment of the standard type (mass moving
behind shield) would start to be limited by fundamental E&M backgrounds

» Shielding the Casimir force itself requires ~micron thick layers for real metals (e.g. Au)
» Further progress would require new ideas or accurate subtraction of Casimir force background

Schematic of Casimir force in vacuum
fluctuation picture:

Casimir £—
plates

Vacuum
fluctuations

https://en.wikipedia.org/wiki/Casimir effect

Note there is a completely equivalent

description in terms of surface dipoles!

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.72.021301
D. Moore, Yale
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Calculation of differential Casimir force:
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Mossbauer spectroscopy

» Rather than shielding Casimir (and other E&M effects) with a conducting layer, use the electron cloud
around a nucleus!

« Mossbauer effect allows absorption spectroscopy measurement of nuclear transitions
« Similar to atomic absorption spectroscopy but at keV energies (with relative linewidths of 10-12 to 10-25)
» First experiments expected to be sensitivity rather than background limited!

Experimental schematic: Projected sensitivity (Gratta group):
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.115031 Use of synchrotron light sources to directly
z it i 4 /
D. Moore, Yale Perimeter, Sept 23, 2022 excite transitions may give further improvement!
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Experimental Frontiers:

1. Shorter Distances

2. Smaller Masses

3. Higher Precision

4. Quantum tests

D. Moore, Yale Perimeter, Sept 23, 2022
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Smaller masses

« Because there is a maximum practical density (p < 20 g/cm3),
smaller distances often correspond to smaller masses

« E.g., for Eot-Wash, divide attractor into 120-fold "fingers”, each with
mass ~100 mg

» For classical experiments, the optimal arrangement of mass is just
a signal-to-background question

* However, single isolated masses are likely required for detecting
gravity in experiments with “qguantum” masses

« The smallest masses for which we can measure gravity to date are
~10% x larger than My, but may decrease quickly in near future!

State-of-the-art (see next slide):

Planck Mass:
10% x lower
mass <
<y

0.1 mm ->20 ug

4+
D. Moore, Yale 2 mm ->100 mg Perimeter, Sept 23, 2022
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Smaller masses

The Vienna group (Aspelmeyer) has recently measured gravity between two isolated ~mm scale masses
using a miniature torsion balance!

Working towards smaller masses using torsion balances, as well as levitated systems (magnetic,
optical)

Schematic of experimental setup:

Measured coupling of 1/r2 force:
a Silica / \
fibre
5 — Weighted mean
My sd | Weighted s.d.
P Systematic uncertainty
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§ Quadrant g’ o =
L photodiode = - 6 =
ST B
m[ |

5 =
3% 1

Faraday .3 =

shield -
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e ——————
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Systematics dominated -> ~10% level accuracy measurement of G
(~1% statistical precision)

D. Moore, Yale

Perimeter, Sept 23, 2022 https://www.nature.com/articles/s41586-021-03250-7 13
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Experimental Frontiers:
1. Shorter Distances
2. Smaller Masses
3. Higher Precision

4. Quantum tests

D. Moore, Yale Perimeter, Sept 23, 2022

irsa: 22090031
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Atom interferometry (equivalence principle)

« Atom interferometry provides an extremely sensitive
tool for searching for weak interactions

« Dual-species atom interferometers (e.g. 8 Rb, 8’Rb)
have long been envisioned for EP tests

« Current state of the art in Stanford interferometer
(Kasevich group) is n ~ 10712

Current systematic uncertainties (Stanford):

Parameter Shift Uncertainty
Total kinematic | 2.0
Az 1.0
Av, 1.5 0.7
z rad
Ax 0.04
Av, 0.04 0.05
Ay 0.2
Av, 0.2
Width 1.6
ac-Stark shift 257
Magnetic gradient -59 0.5
Pulse timing 0.04
Blackbody radiation 0.01
Total systematic -4.4 34 -0.05
Statistical 1.8

See also: https://www.nature.com/articles/ncomms15529 (Firenze group [Tino])

D. Moore, Yale

Pirsa: 22090031
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Experimental concept:
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15
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Atom interferometry (ISL)

» Beyond EP tests, atom interferometry has also been proposed for inverse square law (ISL) tests

* New experiment under construction at Northwestern (Kovachy group) to search at 10 cm — 1 m length
scales

« Aims to probe below best torsion balance sensitivity at these distances (a <109)
Experimental apparatus (Northwestern):

Recent proposal (Rosi, 2017): Projected sensitivity:

1072 |
A
‘.‘ Current bounds
A}
]
. . 107
k I ;
i Pb blocks k
{ ( 2 5 107 \
I. ;' ‘\ ’
v e vl e “ i
S b B FanIfor \ /
» i _BEREC e SN . 10°5 improvements™s, o 4
https://lopscience.lop.org/article/10.1088/1681-7575/aa8fd8 2
1078
1073 1072 10! 10° 10'

A[m]

https://doi.org/10.1117/12.2595546
D. Moore, Yale Perimeter, Sept 23, 2022 16
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Atom interferometry (ISL)

» Micron distance ISL tests with atom interferometry have also been proposed
« Similar to nanoparticle in standing wave trap (in particular, similar expected backgrounds!)

Schematic of short distance ISL test: Projected (background free) sensitivity:

Pericdic Source Mass --> 10" ~

10°
Au 10°
10

10° |
Au Casimir Shield
u Casimir 10°

10°

W2 o

— W A 10‘.!

M2 10g

— T B
10'

10°

Trapping laser 10"
a(eff) = 840 nm 1 o.a

10" PR ETTT] B TR B ey o i ;—1411'_!_“-“.[—1]1.._-;.‘:7
10° 10" 10’ 10' 10° 10’ 10°
) (microns)

Review article: G.M Tino, https://iopscience.iop.org/article/10.1088/2058-9565/abd83e/pdf (2021)

D. Moore, Yale Perimeter, Sept 23, 2022 17,
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Matter waves with nanospheres

» For forces that couple to mass, making the interferometer out of a heavier particle than an atom may also
beneficial (e.g. smaller wavepacket expansion -> sub-um forces, high masses, ...)

« Doesn’t necessarily help with backgrounds, but extremely high sensitivity is in principle possible (to

whatever forces are present)

» Would require technical developments beyond the state-of-the-art to realize this

Near-field Talbot interferometer for
a nanoparticle:

D. Moore, Yale
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Predicted interference pattern:
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Projected sensitivity (background free):
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Cryogenic torsion balances

» University of Washington group is developing new generation of cryogenic torsion balances:

 Lower thermal noise

« Possibly lower patch potential backgrounds (?)
* However, additional complexity with cryogenics, need to control pulse tube vibrations, etc

Schematic of cryostat:
/.

pulse tube cooler

air springs

-\ -y,
T

pendulum
suspension
G10 spacers

outer thermal
shield

M
™ inner thermal
shield

D. Moore, Yale
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Photo of torsion balance prototype:
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Perimeter, Sept 23, 2022

Measured torque noise spectrum:
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Spaced based tests (MICROSCOPE)

» Very simple yet precise experiment to test the EP can be performed with drag free test masses orbiting
the earth
* Look at differential acceleration between Pt and Ti test masses in free fall

» Data taken between 2016-2018 — final result in PRL last week

Measured differential accelerations:

100F ¢ M-ECM (1) Dominant systematic
758+ ADAM (lo) - from thermal effects

=
x
L =25 * # '
_sol Upgraded mission would
- aim to reach 10%7 scale
G -1
100t M(Ti,Pt) = [-1.5 £ 2.3(stat) + 1.5(syst)] x 10713 ]
A Q N A Q N A Q
Gl B S o G e
P Wy i e R g
Date
https://journals.aps.org/prl/abstract/10.1103/PhysRevlett.129.121102
D. Moore, Yale Perimeter, Sept 23, 2022 20
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Experimental Frontiers:
1. Shorter Distances
2. Smaller Masses

3. Higher Precision

4. Quantum tests

D. Moore, Yale Perimeter, Sept 23, 2022
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Gravitational entanglement of masses

» Thought experiment along these lines was famously proposed by Feynman at 1957 Chapel Hill
Conference on “The Role of Gravitation in Physics”

https://edition-open-sources.org/media/sources/5/Sources5.pdf

» While still well beyond current state-of-the-art, renewed interest in the possibility that levitated systems
may allow realization of this sort of experiment

« Two general proposals:

Gravitational interaction of two superpositions:

Supe[position
system

Bose et al. https:
Marletto and Vedral, https:
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Anupam Mazumdar, University of Groningen

rl/abstract/10.1103/PhysRevlett.119.240401 (2017)
journals.aps.or

D. Moore, Yale
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Gravitational interaction of two delocalized particles:
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Gravitational entanglement of masses

Thought experiment along these lines was famously proposed by Feynman at 1957 Chapel Hill

Confe

ance nn “The Rnle nf Gravitation in Phvsirg”

htt

While
may a

Two g

Gr

See talks by Markus for full details

Many of the experimental challenges to shield non-gravitational
interactions are similar to short distance tests of the inverse square law

Additional challenges:
 Create delocalized states
 Avoid decoherence

Beyond tests of gravitational entanglement, reaching these goals is likely to
substantially advance tests of the ISL at short distance!

ticles:

D. Moore, Yale

Pirsa: 22090031

—IUF — Vi
k=1 10 R-_E-?‘S{{?]fr
106} 3

Big-n

Anupam Mazumdar, University of Groningen

50 100
particle separation d/RR

510

500

https://journals.aps.org/prl/abstract/10.1103/PhysRevlett.127.023601

Perimeter, Sept 23, 2022

Page 25/25



