Title: Gravity tests of all scales Speakers: David Moore Collection: School on Table-Top Experiments for Fundamental Physics Date: September 23, 2022 - 4:30 PM URL: https://pirsa.org/22090031

Gravity tests of all scales

David Moore, Yale University

School on Table-Top Experiments for Fundamental Physics

September 22, 2022

Plan for these talks:

Lecture 1 (yesterday):

Overview of best current (lab) experiments and constraints

Lecture 2 (today):

New experimental techniques and frontiers in the coming years

Current experimental frontiers

- Last lecture we summarized the existing constraints on gravity-like forces
- There are a number of new ideas to push the sensitivity of experiments towards:
 - 1. Shorter Distances
 - 2. Smaller Masses
 - 3. Higher Precision
 - 4. Quantum tests
- Many of the new techniques under development are aimed at multiple frontiers
- The first tests of gravity between quantum systems may also be on the horizon!

Pirsa: 22090031

Experimental Frontiers:

1. Shorter Distances

- 2. Smaller Masses
- 3. Higher Precision
- 4. Quantum tests

Perimeter, Sept 23, 2022

Shorter distances

- Torsion balances (Eot-Wash) have now pushed measurements of gravitational strength interactions down to ~50 μ m distances
- Measurements are not limited by intrinsic sensitivity, but instead by backgrounds
 - · In particular, electrostatic "patch potentials" on shielding foil are extremely difficult to avoid

Cross-section of Eot Wash ISL apparatus:

https://digital.lib.washington.edu/researchworks/bitstream/handle/1773 /34135/Hagedorn_washington_0250E_14426.pdf

Topography and surface potential for sputtered Au film:

D. Moore, Yale

Levitated optomechanical systems

- New techniques using optically trapped particles (~100 nm to ~10 μm silica spheres) are being developed to probe shorter distances
- · As with the torsion balance, existing systems are limited by backgrounds rather than sensitivity
 - Patch potentials, vibrations, scattered trapping light, ...
- The key challenge is to design an attractor that modulates the mass at micron distances and is robust to these backgrounds ("lock-in measurement")

Current and future sensitivity (levitated systems)

- First gravity test with a levitated system was recently performed by Stanford group (see talk by Giorgio) ٠
- Further reducing backgrounds may allow gravity-strength interactions to be measured down to ~1-10 ٠ micron distances

Possible future sensitivity (~background free):

Casimir force

- Below ~micron distances, even a technically perfect experiment of the standard type (mass moving behind shield) would start to be limited by fundamental E&M backgrounds
- Shielding the Casimir force itself requires ~micron thick layers for real metals (e.g. Au)
- · Further progress would require new ideas or accurate subtraction of Casimir force background

Mossbauer spectroscopy

- Rather than shielding Casimir (and other E&M effects) with a conducting layer, use the electron cloud around a nucleus!
- Mossbauer effect allows absorption spectroscopy measurement of nuclear transitions
 - Similar to atomic absorption spectroscopy but at keV energies (with relative linewidths of 10⁻¹² to 10⁻²⁵!)
- First experiments expected to be sensitivity rather than background limited!

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.115031

Projected sensitivity (Gratta group):

Use of synchrotron light sources to directly excite transitions may give further improvement! 10

D. Moore, Yale

Experimental Frontiers:

- 1. Shorter Distances
- 2. Smaller Masses
- 3. Higher Precision
- 4. Quantum tests

Perimeter, Sept 23, 2022

Smaller masses

- Because there is a maximum practical density ($\rho \leq 20$ g/cm³), smaller distances often correspond to smaller masses
- E.g., for Eot-Wash, divide attractor into 120-fold "fingers", each with mass ~100 mg
- For classical experiments, the optimal arrangement of mass is just a signal-to-background question
- However, single isolated masses are likely required for detecting gravity in experiments with "quantum" masses
- The smallest masses for which we can measure gravity to date are $\sim 10^4$ x larger than M_{Pl} , but may decrease quickly in near future!

Smaller masses

- Because there is a maximum practical density ($\rho \leq 20$ g/cm³), smaller distances often correspond to smaller masses
- E.g., for Eot-Wash, divide attractor into 120-fold "fingers", each with mass ~100 mg
- For classical experiments, the optimal arrangement of mass is just a signal-to-background question
- However, single isolated masses are likely required for detecting gravity in experiments with "quantum" masses
- The smallest masses for which we can measure gravity to date are $\sim 10^4$ x larger than M_{Pl} , but may decrease quickly in near future!

Smaller masses

- The Vienna group (Aspelmeyer) has recently measured gravity between two isolated ~mm scale masses using a miniature torsion balance!
 - Working towards smaller masses using torsion balances, as well as levitated systems (magnetic, optical)

Schematic of experimental setup:

Measured coupling of $1/r^2$ force:

Systematics dominated -> ~10% level accuracy measurement of G (~1% statistical precision)

Perimeter, Sept 23, 2022 https://www.nature.com/articles/s41586-021-03250-7

D. Moore, Yale

Experimental Frontiers:

- 1. Shorter Distances
- 2. Smaller Masses
- 3. Higher Precision
- 4. Quantum tests

Atom interferometry (equivalence principle)

- Atom interferometry provides an extremely sensitive tool for searching for weak interactions
- Dual-species atom interferometers (e.g. ⁸⁵Rb, ⁸⁷Rb) have long been envisioned for EP tests
- Current state of the art in Stanford interferometer (Kasevich group) is $\eta \sim 10^{-12}$

Current systematic uncertainties (Stanford):

Parameter	Shift	Uncertainty
Total kinematic	1.5	2.0
Δz		1.0
Δv_z	1.5	0.7
Δx		0.04
Δv_x		0.04
Δy		0.2
Δv_{y}		0.2
Width		1.6
ac-Stark shift		2.7
Magnetic gradient	-5.9	0.5
Pulse timing		0.04
Blackbody radiation		0.01
Total systematic	-4.4	3.4
Statistical		1.8

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.191101

See also: https://www.nature.com/articles/ncomms15529 (Firenze group [Tino])

D. Moore, Yale

Perimeter, Sept 23, 2022

Atom interferometry (ISL)

- Beyond EP tests, atom interferometry has also been proposed for inverse square law (ISL) tests
- New experiment under construction at Northwestern (Kovachy group) to search at 10 cm 1 m length scales
 - Aims to probe below best torsion balance sensitivity at these distances ($\alpha \leq 10^{-3}$)

Experimental apparatus (Northwestern):

Atom interferometry (ISL)

- Micron distance ISL tests with atom interferometry have also been proposed •
 - Similar to nanoparticle in standing wave trap (in particular, similar expected backgrounds!) ٠

Schematic of short distance ISL test:

D. Moore, Yale

Perimeter, Sept 23, 2022

Projected (background free) sensitivity:

17

Irvine

10⁴

10³

Matter waves with nanospheres

- For forces that couple to mass, making the interferometer out of a heavier particle than an atom may also • beneficial (e.g. smaller wavepacket expansion -> sub- μ m forces, high masses, ...)
- Doesn't necessarily help with backgrounds, but extremely high sensitivity is in principle possible (to • whatever forces are present)
- Would require technical developments beyond the state-of-the-art to realize this ٠

Cryogenic torsion balances

- University of Washington group is developing new generation of cryogenic torsion balances:
 - Lower thermal noise
 - Possibly lower patch potential backgrounds (?)
- · However, additional complexity with cryogenics, need to control pulse tube vibrations, etc

Photo of torsion balance prototype:

Perimeter, Sept 23, 2022

Measured torque noise spectrum:

Spaced based tests (MICROSCOPE)

- Very simple yet precise experiment to test the EP can be performed with drag free test masses orbiting the earth
 - · Look at differential acceleration between Pt and Ti test masses in free fall
 - Data taken between 2016-2018 final result in PRL last week

Measured differential accelerations:

Experimental Frontiers:

- 1. Shorter Distances
- 2. Smaller Masses
- 3. Higher Precision
- 4. Quantum tests

Gravitational entanglement of masses

 Thought experiment along these lines was famously proposed by Feynman at 1957 Chapel Hill Conference on "The Role of Gravitation in Physics"

https://edition-open-sources.org/media/sources/5/Sources5.pdf

- While still well beyond current state-of-the-art, renewed interest in the possibility that levitated systems
 may allow realization of this sort of experiment
- Two general proposals:

Gravitational interaction of two superpositions:

Gravitational interaction of two delocalized particles:

D. Moore, Yale

Perimeter, Sept 23, 2022

Gravitational entanglement of masses

