Title: On the continuum limit of spin foams: graviton dynamics and area metric induced corrections

Speakers: Athanasios Kogios

Collection: Young Researchers Conference

Date: June 22, 2022 - 9:00 AM

URL: https://pirsa.org/22060054

Abstract: The semi-classical limit of spin foams leads to the Area Regge action. It was long thought that this action leads to flatness and does, in particular, not allow for propagating gravitons. I will present the first systematic studies of the continuum limit of the Area Regge action, using different versions of regular hypercubic lattices. These studies have shown that the Area Regge action does in its continuum limit, lead to leading order to general relativity, and thus to propagating gravitons. The higher order corrections depend on the choice of triangulation for the hypercubic lattice. However, there seems to be a preferred choice, for which the Area Regge action is not singular. In this case the correction term approximates the square of the Weyl curvature tensor, and can be interpreted to arise from an area metric dynamics. We therefore conjecture that the continuum limit of spin foams is described by an area metric theory.

Overview ●O	Introduction O	Calculations 00000000	Summary 000	Thank You O	Bibliography	Refer	
Overview	w I						-
•	Solve spin foai Semi-classical	ms (path integr limit of spin fo	°al) (Plebans ams → Area	ki action or di	scretization).	Perimeter-E	
•	Implement on	a lattice (discre	etization of p	path integral).			
				< □ > <	@▶ ∢ ≧ ⊁ ∢ ≧ ≻	≣ ্পি ও 6 / 48	

Overview O●	Introduction O	Calculations 00000000	Summary 000	Thank You O	Bibliography	Refer			
Overviev	∧ II								4
						Perimo	eter-B	4	
٩	Find continuu	n limit.							
۰	A lot of calcul	ations.							
۰	Connection wi	th GR (?).							
				${}^{\bullet} \Box \succ {}^{\bullet}$		≣ ৩৫৫ 9/4	8		

Overview OO	Introduction •	Calculations 00000000	Summary 000	Thank You O	Bibliography	Refer		
						Perimet	er-B	
3	 Loop Quantum description of s 	Gravity (LQG) pace-time.), leading ca	ndidate for a	quantum			
2	 LQG dynamics 	can be consist	ently defined	on the micro	oscopic level.			
	• Spin foams: co	nfigurations of	the quantur	n geometry of	f space-time.			
	• Path integral fo	ormulation of L	QG.					
	 Semi-classical I 	imit of spin foa	ams o Area	Regge Actior	۱.			
				< 🗆 > <	요 > < 분 > < 분 >	ا ⊒ ا 14/48		

Length Regge action is a well established approximation to Einstein-Hilbert action.

$$S_{LR} = \frac{1}{\kappa} \sum_{t} A_t(L_e) \epsilon(L_e)$$
(1)

$$\epsilon_t^L(L_e) = 2\pi - \sum_{\sigma \supset t} \theta_t^\sigma(L_e) \tag{2}$$

where θ_t^{σ} is the dihedral angle between two tetrahedra sharing the triangle t in the four-simplex-simplex σ .

In Length Area Calculus ϵ measures curvature!

Perimeter-B

Area Regge action uses areas as fundamental variables.

$$S_{AR} = \frac{1}{\kappa} \sum_{t} A_t \epsilon^A(A_t)$$
(3)

$$\epsilon_t^{\mathcal{A}}(\mathcal{A}_t) = 2\pi - \sum_{\sigma \supset t} \theta_t^{\sigma}(\mathcal{A}_t)$$
(4)

where ϵ_t^{σ} measures a conglomerate of curvature and a shape mismatch between neighboring four-simplices, not the curvature as before (keep in mind #1)!

Overview 00	Introduction O	Calculations 00000000	Summary ●OO	Thank You O	Bibliography	Refer		
Results								
						Perimeter	-В	
• L	_eading order:	Recover GR!						
• L	_owest order co	rrection: Weyl	squared!					
				< • • • • • • • • • • • • • • • • • • •	副》《注》《注》	≣ ∽α. 37/48		
						5. / 10		

Overview 00	Introduction O	Calculations	Summary 000	Thank You O	Bibliography	Refer		
More Calculatio	ns							
More C	alculations							
						Perime	ter-B	
٩	Identify length	degrees of fre	edom.					
۲	Lowest order o	correction in th	e effective ad	tion for the le	ngth metric			
	fluctuations.							
				+ - + +		三 りへ(¢	
						35 / 4	3	

Overview OO Posulte	Introduction O	Calculations 00000000	Summary O●O	Thank You O	Bibliography	Refer			
Results	II							8	N 24
						Perim	eter-B		V.
Why	are the result	s interesting?							
٩	Some specula	tions in literatu	re, first time	these calculat	ions were				
	performed!								
0	Previously the	ught that Area	Regge impo	ses flatness (re	emember differ	ent			
	definitions of	$(\#1) \rightarrow \text{Incorr}$	rect semi-clas	sical limit of s	pin toams.				
0	Degeneracy or \rightarrow need to de	f Jacobian (rem form the regula	iember why where r lattice \rightarrow s	we introduced	a new lattice ‡ dof	#2)			
	/ 11000 00 00	ionn the reput		appression or	GOT				
				${}^{\bullet} \Box \models {}^{\bullet}$		■ うへ 38/4	C*		

Overview OO Results	Introduction O	Calculations 00000000	Summary O●O	Thank You O	Bibliography	Refer		9
Results	II					Perime	eter-B	
Why	/ are the results	interesting?						
۰	Some speculation performed!	ons in literature	e, first time	these calculat	tions were			
۰	Previously thou definitions of ϵ	ght that Area $\#1) o$ incorre	Regge impo ct semi-clas	oses flatness (resident of s	emember differe spin foams.	nt		
۹	Degeneracy of . $ ightarrow$ need to defo	Jacobian (reme rm the regular	ember why vlattice $ ightarrow$ s	we introduced suppression of	a new lattice # dof.	2)		
				< • > <	@ > < 볼 > < 볼 >	■ うへ(40/4	8	

Overview Introduction Calculations Summary Thank You Bibliography Refe 00000000 Bibliography I Perimeter-B [1] Bianca Dittrich and Athanasios Kogios. From spin foams to area metric dynamics to gravitons, 2022. URL https://arxiv.org/abs/2203.02409. [2] John W. Barrett and Ruth M. Williams. The Asymptotics of an amplitude for the four simplex. Adv. Theor. Math. Phys., 3:209-215, 1999. doi: 10. 4310/ATMP.1999.v3.n2.a1. [3] Bianca Dittrich. Modified Graviton Dynamics From Spin Foams: The Area Regge Action. 5 2021. [4] Frederic P. Schuller and Mattias N.R. Wohlfarth. Geometry of manifolds with area metric: Multi-metric backgrounds. *Nuclear Physics B*, 747(3): 398-422, jul 2006. doi: 10.1016/j.nuclphysb.2006.04.019. URL https: //doi.org/10.1016%2Fj.nuclphysb.2006.04.019. [5] Raffaele Punzi, Frederic P. Schuller, and Mattias N. R. Wohlfarth. Geometry for the accelerating universe. *Physical Review D*, 76(10), nov 2007. doi: 10. 1103/physrevd.76.101501. URL https://doi.org/10.1103%2Fphysrevd. 76.101501. イロト 不良 トイヨト イヨト 三国 DQC 47 / 48