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Abstract: Monitored quantum circuits, composed of local unitary operators and projective measurements, have recently emerged as arich setting for
studying non-equilibrium quantum dynamics. In such systems, sufficient densities of measurements can protect a highly-monitored steady state
phase with area law entanglement. Furthermore, it has been shown that such arealaw phases can host a measurement-protected Ising ferromagnetic
order. However, it is not yet known whether such measurement-protected order is a generic phenomenon or whether it relies on the discrete Ising
symmetry. To begin answering this question, we introduce a circuit model with continuous symmetry where ferromagnetic order arises in the steady
state. Notably, our model requires feedback based on measurement resultsin order to generate this ferromagnetic order
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Measurement-Protected Order in
Monitored Quantum Circuits with
Continuous Symmetry

Jake Hauser (UC Santa Barbara)



Outline

1. Introduction to monitored quantum circuits

« What are they and why do we care?
e What sorts of non-equilibrium order do they support?

2. Developing an interesting model with continuous symmetry
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Monitored quantum circuits

« A minimal model for quantum evolution:
e unitary
e local

« More generally, we allow measurements
i=1 VACIATD
with probability <1MP?,‘¢>

T
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Monitored quantum circuits

« A minimal model for quantum evolution:
e unitary
e local

« More generally, we allow measurements
M = Zmipi ) — )

o V(| P |¥)
with probability <¢’Pzw>

e Classical feedback from measurements is
also allowed

T
“ pr—y Unitar\/ “ — measurement
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Entanglement phase transition

F 3

“ — random unitary

* ___ measurement in Z basis,
inserted with probability p

_
T

volume law entanglement critical point area law entanglement

D < Pe P =DPc P> Pc
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Measurement-protected order

“ __ random unitary with Z, symmetry
applied with probability 1 —p

“ — measurement with probability p:
» /7 measurement with

probability r
+ Xl measurement with
probability 1 —r

A J

Sang & Hsieh 2021
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Measurement-protected order
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What about continuous symmetry?
Sang & Hsieh 2021
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A Model With Continuous
Symmetry
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U(1) Symmetry
e U(1) charge is total spinin Z:

Q=) Z — U)=e"?

 Local two-site operators and measurements must commute with

/200 0)
fez- 000
\0 0 0 —2/
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SWAP Measurement

/(1 0 0 0)
(o0 10
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SWAP Measurement

w = (S, +S)?-L L

I = [1,1IX1, 1] + |1,0)1, 0] + [1, =1X1, =1

[T = |0,0%0,0
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Our Model

if negative
parity

1. Perform SWAP measurement on
adjacent sites

2. Ifresultis -1, act with Z unitary
on first site

1 1
01) — 10)) - —

S(101) = [10)) > =

(]01) + |10)) : L
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Reaching a steady state

Half-Chain Entanglement (No Feedback)
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Half-Chain Entanglement (Feedback)
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Ferromagnetic Order

 Diverging susceptibility diagnoses long-range order

1 _,

x =7 > _(¥I(S:- S))l)

ij

« Can be written as linear function of density matrix
]_ — —
X=7 ZTT[(&: ' Sj)ﬂ}
]

« Steady-state of our model has ferromagnetic order!
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Post-selection problem

o Measurements have random, uncontrollable outcomes
« Reproducing the same quantum state is exponentially hard

Quantum Trajectories Quantum Channel

. By
" Vv (Y| Pi|v)

Tomography is exponentially hard

p— 1 plly +ZI1_pll_Z
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Ongoing work

« Steady state is ordered, but this order is not generally robust to
perturbations

« Seeking to understand perturbations from another perspective:

p—p =C(p)

with C linear

 Study ground state and low-energy excitations of

H=1-C
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Key Takeaways

1. Monitored quantum circuits are an interesting platform for studying
order out of equilibrium

2. AU(1)-symmetric model with SWAP measurements and Z feedback
leads to steady state ferromagnetic order

3. But robustness against perturbations remains elusive
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Questions?

if negative
parity
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