Title: Illuminating the pair-instability supernova mass gap with super-kilonovae
Speakers: Aman Agarwal

Collection: Young Researchers Conference

Date: June 21, 2022 - 9:00 AM

URL.: https://pirsa.org/22060048

Abstract: The core collapse of rapidly rotating massive 10Msun stars ("collapsars'), and resulting formation of hyper-accreting black holes, are a
leading model for the central engines of long-duration gamma-ray bursts (GRB) and promising sources of r-process nucleosynthesis. In this talk, |
will explore the signatures of collapsars from progenitors with extremely massive helium cores >= 130Msun above the pair-instability mass gap.
While rapid collapse to a black hole likely precludes a prompt explosion in these systems, we demonstrate that disk outflows can generate a large
quantity (up to >= 50Msun) of gecta, comprised of >= 5 10Msun in r-process elements and 0.1 1M of 56Ni, expanding at velocities 0.1 c.
Radioactive heating of the disk-wind € ecta powers an optical/infrared transient, with a characteristic luminosity 1042 erg sland spectral peak in the
near-infrared (due to the high optical/UV opacities of lanthanide elements) similar to kilonovae from neutron star mergers, but with longer durations
>= 1 month. These "super-kilonovae" (superKNe) herald the birth of massive black holes >= 60M, which-- as a result of disk wind mass-loss--can
populate the pair-instability mass gap "from above" and could potentialy create the binary components of GW190521. SuperKNe could be
discovered via wide-field surveys such as those planned with the Roman Space Telescope or via late-time infrared follow-up observations of
extremely energetic GRBs. Gravitational waves of frequency 0.1 50 Hz from non-axisymmetric instabilities in self-gravitating massive collapsar
disks are potentially detectable by proposed third-generation intermediate and high-frequency observatories at distances up to hundreds of Mpc; in
contrast to the "chirp" from binary mergers, the collapsar gravitational-wave signal decreases in frequency as the disk radius grows (“sad
trombone").
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Overview

* Motivation: The pair instability supernova mass gap and collapsars

* Methods: Fallback and outflow calculation

* Results: Super-Kilonova and Gravitational Waves
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The pair-instability mass gap....in theory

Stellar evolution models predict an absence of black holes in the mass range of ~ 55-130
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The pair-instability mass gap....in observationﬁ s

LIGO/Virgo announced the detection of >7 BHs in the mass gap (GW190521 in particular) How did these black hg .
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LIGO-Virgo / Aaron Geller / Northwestern University
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Collapsars
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MacFayden and Woosley, 1999
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Collapsars 300 8

massive stars (M> 20 M)

* Angular momentum of infalling material ->

circularization and accretion disk formation.

* Widely accepted model to generate long GREs
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MacFayden and Woosley, 1999
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Collapsars and mass gap
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300 §

We take collapsars lying above the mass 200 -

gap M gjjapse = 130-150 Msun -
100§

* Thermal outflows from this disk may unbind 10-

50 Msun material -> forming BHs lying in the 0

upper mass gap.

* Nucleosynthesis of heavy elements takes place in

-200 E
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* Ejected mass may lead to multi-messenger signals

MacFayden and Woosley, 1999
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* Results: Super-Kilonova and Gravitational Waves
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4c. Photodisintegration
instability and direct .
BH formation

3. Explosive Stellar Models
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Stellar Models
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* Mass at collapse~130-150 M,

* Massive and Compact models
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Adding Rotation!
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* Discretize stellar model into radial and polar directions.

* Assume an inner core that has lost all its angular momentum to

an envelope during stellar evolution.

* A broken power-law J profile, three parameters: r,, f, and p
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Evolution
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Evolution
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Evolution
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Filling the mass gap

. Final BH mass [M]

A sweep across the parameter space of

rotation profile 0.6

0.4

0.2 N
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Log (core-envelope transition radius)
GW190521

mass contours

-> we can populate the whole mass gap

Fraction of maximum rotation

with massive collapsars!

Pirsa: 22060048 Page 17/26



Overview

* Motivation: The pair-instability supernova mass gap and collapsars

 Methods: Fallback and outflow calculation

* Results: Super-Kilonova and Gravitational Waves
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Origins of heavy elements
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Graphic created by Jennifer Johnson Astronomical Image Credits:
http//www.astronomy.ohio-state.edu/~jai/nucleo/ ESA/NASA/AASNova




Birthplace of heavy elements

Neutron Star Mergers [observed but has shortfalls] Collapsars [Proposed by Siegel, Barnes and Metzger, 2019]

Credit: University of Warwick/Mark Garlick Credit: NASA/SkyWorks Digital
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Super collapsar ejecta

* Heavy r-process ~ 0.5-2.5 solar masses

* Light r-process ~ 10-20 solar masses

Siegel, Agarwal+ 2021, arXiv:2111.03094
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Super-Kilonova

Perimeter-B

* Higher mass ejected implies higher luminosity hence the

name super-kilonoval

* The transient peaks in near and mid-infrared wavelengths with

broad absorption features.

* With Nancy Grace Roman space telescope we maybe able to
Nancy Grace Roman Space Telescope [Credit: NASA]

detect 1-20 super-Kilonovae in 5yrs

Siegel, Agarwal+ 2021, arXiv:2111.03094
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Gravitational Waves
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* Massive disks -> Toomre like chirp Sad trombone
gravitational instabilitites -> 204 — R25025
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* Multiband signals detectable Siegel, Agarwal+ 2021, arXiv:2111.03094

by planned 3G and decihertz

detectors
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Accretion time scale

Perimeter-B

A subclass of long GRBs could originate from massive collapsars! LGRB time scale ~ >10 s
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Summary

Perimeter-B

Massive collapsars might be a channel to populate the PISN mass gap from above.

The origin of r-process elements in the universe is still an open question and massive collapsars

could play a significant role in populating their environment with these elements.

They may also act as a source for multi-messenger searches with signals varying from GRBs

to gravitational waves.

The superkilonova events can be targeted by upcoming telescopes like Vera C Rubin

Observatory(optical) and Nancy Grace Roman Space Telescope(infrared).

Our models, if correct, predict a subclass of GRB that come from these massive collapsars (~ 10%

depending on the rate of these events)

Upcoming 3G and decihertz detectors can be targeted to do multi-band detection of gravitation

waves generated from the Toomre-like instabilities expected to occur in these massive disks.
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Summary
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* Massive collapsars might be a channel to populate the PISN mass gap from above.

» The origin of r-process elements in the universe is still an open question and massive collapsars

could play a significant role in populating their environment with these elements.

» They may also act as a source for multi-messenger searches with signals varying from GRBs

to gravitational waves.

» The superkilonova events can be targeted by upcoming telescopes like Vera C Rubin

Observatory(optical) and Nancy Grace Roman Space Telescope(infrared).

* Our models, if correct, predict a subclass of GRB that come from these massive collapsars (~ 10%

depending on the rate of these events)

* Upcoming 3G and decihertz detectors can be targeted to do multi-band detection of gravitation

waves generated from the Toomre-like instabilities expected to occur in these massive disks.
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