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Abstract: In this talk we will discuss the notion of thermality for quantum field theories in curved spacetimes, and how it relates to the Unruh effect
and Hawking radiation. Then we will argue that particle detectors are physical systems which can act as thermometers, thermalizing to the
temperature of the field. We will show that any non-relativistic quantum system undergoing appropriate trajectories can probe the field's
temperature, regardless of how they are coupled to the field.
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[1] T. Rick Perche, “General features of the thermalization of particle detectors and the unruh effect,” Phys. Rev. D 24 104, 065001 (2021).
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< Introduction: The Unruh Effect
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[2] W. G. Unruh, “Notes on black-hole evaporation,” Phys. Rev. D 14, 870-892 (1976).
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@, Introduction: The Unruh Effect |

t
Accelerated observers in the
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[2] W. G. Unruh, “Notes on black-hole evaporcﬁn,” Phys. Rev. D 14, 870-892 (1976).
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£) Gibbs States
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£) Gibbs States

—_—ee/

Perimeter-B

In a quantum system with a time independent Hamiltonian, a Gibbs
state P with inverse temperature 3 is defined as:

0.15

~

e‘ﬁH
ot

where the partition function is

| p=
0.1\ 1§

Z = tr e_’BEr .
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£) Gibbs States

—_—

Perimeter-B

In a quantum system with a time independent Hamiltonian, a Gibbs
state P with inverse temperature 3 is defined as:

P= 5
0.1 Z
_g
2 (.05

This doesn't work in general!
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@ Unitary Time Evolution

The unitary time evolution operator is
given by

U(t) _ it %

And in the Heisenberg picture, operators
evolve according to:

oy (A)= A(t) = UT (1) AU (1)

L
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o The KMS Condition |,

Then any Gibbs state can be shown to satisfy the KMS condition
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o The KMS Condition |,

Then any Gibbs state can be shown to satisfy the KMS condition
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o The KMS Condition |,

Then any Gibbs state can be shown to satisfy the KMS condition

Conversely, any state that satisfies the KMS condition for all
operators is a Gibbs state.
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o The KMS Condition |,

Then any Gibbs state can be shown to satisfy the KMS condition

Conversely, any state that satisfies the KMS condition for all
operators is a Gibbs state.

The KMS condition defines a more general notion of thermality!
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@ The 3 Approaches

We will discuss 3 ways of seeing the Unruh effect:
<< 1) Rindler Modes Perspective

— Different quantization schemes p~ ]
3 2) 0T Perspective

— Operator valued distributions
) 3) Detector Perspective NN

— Localized non-relativistic qguantum systems \:""a\

[2] W. G. Unruh, “Notes on black-hole evaporation,” Phys. Rev. D 14, 870-892 (1976).

[3] Stephen A. Fulling, “Nonuniqueness of canonical field quantization in riemannian space-time,” Phys. Rev. D 7, 2850-2862 (1973).
[4] J. J Bisognhano and E. H. Wichmann, “On the Duality Condition for a Hermitian Scalar Field,” J. Math. Phys. 16, 985-1007 (1975).
[5] John Earman, “The Unruh effect for philosophers,” Stud. Hist. Philos. M P 42, 81-97 (2011),

Pirsa: 22060046 Page 15/48



Perimeter-B

Pirsa: 22060046

Page 16/48




-~ 1) Rindler Modes Perspective

One way of describing a quantum field
is in terms of a choice of modes: x

~

Qb(x) — /dnk (ukz(x)&k = u}’; (X)&};) ' (VMV“: mg)uk(x)/: 0

We then impose commutation relations

Gy, ah,] =0 (k — kN,
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- 1) Rindler Modes Perspective

One way of describing a quantum field
is in terms of a choice of modes: &

S

o(x) = /dnk (Uk:(x)&k + uy, (x)&};) ' (VMV“: mg)uk(x)/: 0

We then impose commutation relations

G, a1,] =6 (k — k1,

and the vacuum |0) is defined by

Gz [0) = 0
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1) Mode Decompositions

We could instead pick another mode
decomposition x /

P A X 5 —
P(x) = /dnk (‘Uk(x)bk +- vZ(x)b,t,) | (VHVM\_ m )’Uk(X)/— 0
and impose commutation relations

b, b}, ] = 6 (k — k)1

and the vacuum |0") will be defined by

br |0') = 0
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-~ 1) Different Vacua

The vacua |0) and |0) will not be the
same in general!

what we call vacuum depends on a
choice of modes.

"No excitations” means no excitations WP~
with respect to a given basis of modes. Z

In some scenarios, it is possible b
to associate modes with

physical situations
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1) The Minkowski Vacuum

In Minkowski spacetime, the choice of
modes

1 eik-x

U,k(x) - (271_)”/2 m

yields the Minkowski vacuum |0ar).

The Minkowski vacuum is such that
"inertial observers see no particles".

It is also invariant under all
symmetries of Minkowski spacetime.
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- 1) The Rindler Vacuum

We can also solve the Klein-Gordon
equation in Rindler coordinates

1

t = ~e*sinh(ar)
a
1

r = —e cosh(ar)

a
which are adapted to a uniformly acce-

lerated observer with acceleration a.

The obtained modes vy (x) are the

Rindler modes, and define the Rindler
vacuum |OR).
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1) The Unruh Effect

The Rindler vacuum |0g) and the
corresponding creotlon and annihilati-
on operators b bk define a notion of
"particles” for occeleroted observers.

If the field is in the Minkowski vacuum,
the particle density operator for an
accelerated observer gives

(k) = (Onr| DLDr [0nr)
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-~ 1) The Unruh Effect

The Rindler vacuum |0g) and the
correspondlng creotlon and annihilati-
on operators b bk define a notion of
"particles” for acceleroted observers.

If the field is in the Minkowski vacuum,
the particle density operator for an
accelerated observer gives

. 5 1 #
(ivgs) = (Ons] bLbre [0 X —5m- is a/the

e — distribution!
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-~ 1) Rindler Modes Perspective

Issues with this derivation:

1) Requires modes (which are
intrinsically non-local) to talk
about temperature for a local
observer.

2) The Rindler vacuum is non-
physical: it has a divergent
energy density in the lightcone.
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€D 2) .\ )/ Perspective

In Algebraic Quantum Field Theory (AQFT), the quantum
field can be seen as an operator valued distribution:

3= [ av deg
test function

well defined element of an algebra

States are functionals w, which map operators to their
expected value

wp(6(1) = (o)) =tx(d(/)0)

irsa: 22060046 Page 26/48




€3 2) Thermality in |\ )/

Thermality is then understood in terms of the KMS
condition.

If - is an operation corresponding to a notion of time
evolution, then the KMS condition for a state with
inverse temperature 3 reads

(o (A)£)Bl)) = (Bl@)arsis(A)(S))

for all operators A and B in the algebra of the
quantum field theoruy.

P
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&) 2) The Unruh Effect

The boost generators define a notion of time evolution
in Minkowski spacetime, whose orbits c‘orrespond to |
uniformly accelerated observers. g

In the AQFT language, this time
evolution is implemented by an
operation .
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&5 2) The Unruh Effect

It can be shown that the Minkowski vacuum is
a KMS state with respect to the time evolution
generated by o !

If the time parameter 7 is adjusted to match the proper
time of a uniformly accelerated observer, we find

2T
B==
a

[3] J. Jd Bisognano and E. H. Wichmann, “On the Duality Condition for a Hermitian Scalar Field,” J. Math. Phys. 16, 985-1007 (1975).
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&3 2) /7' Perspective

Issues with the AQFT perspective:

1 It is also non-local: we need to apply the "time evolution”
to the field operators and take the expected value of the
field state, which is defined everywhere in space.

Although here one can talk about local field operators.

2) There is no phusical time evolution associated to o/, it
is merely a mathematical operation.
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) 3) Detector Perspective

A particle detector is a
- Localized.
- Non-relativistic quantum system.

- That couples to a quantum field.

e.g. an atom coupled to the quantum
electromagnetic field.

Z(7)

1/a
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) 3) Detector Perspective

t
"From the retinas of our eyes to the solid

state sensors at the LHC, we never
measure a quantum field other than by
coupling something to it.”

z(7)

Particle detector modelsarethe | .
theoretical framework for the
"'something".

[6] Eduardo Martin-Martinez, T. Rick Perche, and Bruno de S. L. Torres, “General relativistic quantym optics: Finite-size
particle detector models in curved spacetimes,” Phys. Rev. D 101, 045017 (2020).
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) 3) Detector Perspective

Particle detectors can be used as
thermometers for probing the
Unruh effect. o

It is enough to consider a detector _1
undergoing a uniformly accelerated ST
trajectory, and ask whether it ends
in a thermal state.
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% 3) The UDW Model

The simplest particle detector is the two-level UDW model.
e |t undergoes a trajectory Z(T), parametrized by proper time.
e Its free Hamiltonian is A, = Q676 l 2Lr)

® The interaction with the field &(x) is prescribed
by the interaction Hamiltonian density:

~ ~

hr(x) = M) () p(x) A(x)

[6] Eduardo Martin-Martinez, T. Rick Perche, and Bruno de S. L. Torres - Phys. Rev. D 101, 045017 (2020)
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% 3) The UDW Model

The simplest particle detector is the two-level UDW model.
e |t undergoes a trajectory Z(T), parametrized by proper time.

o Its free Hamiltonian is H, = Q61T6~.

® The interaction with the field qﬁ(x) is prescribed
by the interaction Hamiltonian density:

= spacetime smearing function
hil(x) = @;@0 (x)

N >monopole moment

6iQ’T6.+ + e—iQTa_—

[6] Eduardo Martin-Martinez, T. Rick Perche, and Bruno de S. L. Torres - Phys. Rev. D 101, 045017 (2020)

2(7
|

A(x)
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) 3) The UDW Model hr(x) = AMX)i(7) gl

It is not merely a theoretical idealization!

Appropriate choices of A(x) can mimic physical
interactions*, such as

Light-Matter interaction.”

. . : A(x
Interactions of nucleons with neutrinos.”"" ()

[7]1 Alejandro Pozas-Kerstjens and Eduardo Martin-Martinez - Phys. Rev. D 94, 064074 (2016)

[8] Nicholas Funai, Jorma Louko, and Eduardo Martin-Martinez - Phys. Rev. D 99, 065014 (2019)

[9]1 Richard Lopp and Eduardo Martin-Martinez - Phys. Rev. A 103, 013703 (2021)

[10] Bruno de S. L. Torres, T. Rick Perche, André G. S. Landulfo, and George E. A. Matsas - Phys. Rev. D 102, 093003 (2020)
[11] T. Rick Perche and Eduardo Martin-Martinez -Phys. Rev. D 104, 105021 (2021)
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> 3) The Unruh Effect
Detectors can act as thermometers. ;

The Excitation-Deexcitation Ratio can
be used to read off the temperature
of the detector.

If a detector with energy gap () sa-

tisifies D
—e —
g e 519

Pe—g

Z(7)

1a
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) 3) The Unruh Effect

i abiiaisiiia

Detectors can act as thermometers. .

The Excitation-Deexcitation Ratio can
be used to read off the temperature
of the detector.

If a detector with energy gap () sa-
tisifies

probabilities!

— =

leading order

Z(7)

1a

transition

Pi
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2 3) The Unruh Effect

Detectors can act as thermometers. .

The Excitation-Deexcitation Ratio can
be used to read off the temperature
of the detector. 1)

If a detector with energy gap () sa-
tisifies o

1a

leading order transition
probabilities!

then it is* in a thermal state of inverse
temperature 0.
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7> 3) The Unruh Effect

We consider a uniformly accelerated
UDW detector coupled to the
Minkowski vacuum.

The EDR for a UDW detector coupled
for long times reads

Pg—e _ 2mS
ge _ -2

lim
T—>OO p€_>g

t

Z(7)

1a
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> 3) The Unruh Effect

Issues with the detector approach:

1) Calculations are perturbative,
which makes thermalization harder
to study.

2) Is not entirely done within QFT: it
requires an external non-relativistic
quantum system.

Z(7)

1a

Pi

IIIII : 22060046
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| General Thermalization of Detectors

It is possible to use detectors to
probe the KMS temperature in more
general setups.

o ¥ —

“ij_——/ :
\\\ =

N A ———
LN T ——

If the field state satisfies the KMS AT ZZ
condition with respect to the local AR AATAAT
time evolution around the detector’s

trajectory

[1] T. Rick Perche, “General features of the thermalization of particle detectors and the Unruh effect,” Phys. Rev. D 104, 065001 (2021).
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. Time Flow Around a Trajectory

Consider a timelike trajectory z(7).

We pick a Fermi Normal Coordinates IV
¢ = (7,&)around the trajectory.
The 7 parameter corresponds to the ggggg:;ggggé

trajectory proper time, and extends
the time parameter locally around
the curve.

[1] T. Rick Perche, “General features of the thermalization of particle detectors and the Unruh effect,” Phys. Rev. D 104, 065001 (2021).

Pirsa: 22060046 Page 43/48



Time Flow Around a Trajectory

) DA TIN BEFRG R

The flow @ associated to 7 defines
an operation in AQFT:

A

o (9)(f) = / AVH(x) f (@, (x))

| | | i
'IA-‘:' <4 : ‘: ll f ——7
. 7 wa
= = ' . Ara -
A ¥
-~ - < vy .--,
A ay ro ) gy r‘r‘-g-
‘_'—‘--g/;-.‘.__-"r-;'r
=2 9 7 T W iy ——

Our assumption is that the field is in @
KMS state with respect to the time
flow generated by «v .

[1] T. Rick Perche, “General features of the thermalization of particle detectors and the Unruh effect,” Phys. Rev. D 104, 065001 (2021).
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| Thermalization of Detectors

—_—

In [5] it was proved that the detector
thermalizes to the KMS temperature

of the field if:
e The detector is rigid and sufficiently

small compared to its acceleration R

and the curvature of spacetime. é:'f.-f'is-':é'-‘-'éé'
e The interaction lasts for sufficiently

long times compared to the

detector gap.

[1] T. Rick Perche, “General features of the thermalization of particle detectors and the Unruh effect,” Phys. Rev. D 104, 065001 (2021).
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| The Generality of the Result ,

Moreover, this result is valid
for any* particle detector

that couples to any operator n\n
in any quantum field theory, Jyrsvyyans
and is valid in curved spacetimes. JZZZ55522224

e.g. an atom coupled with the electromagnetic field
uniformly accelerated in flat spacetimes, or

around a black hole, probing Hawking radiation

[1] T. Rick Perche, “General features of the thermalization of particle detectors and the Unruh effect,” Phys. Rev. D 104, 065001 (2021).
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| Summary

—_—

Thermality in QFT is phrased in terms of the KMS condition

The Minkowski vacuum is a KMS state with respect to
uniformly accelerated time translations.

Particle detectors thermalize to the KMS temperature of
the field associated with their motion.

- This is true for any detector coupled to any operator
of any quantum field theory in curved spacetimes.

Overall, this can be seen as a generalization of the Unruh effect.

[1] T. Rick Perche, “General features of the thermalization of particle detectors and the Unruh effect,” Phys. Rev. D 104, 065001 (2021).
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Perimeter-B

Thank You!

General features of the thermalization of particle detectors
and the Unruh effect

T. Rick Perche®”

Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
and Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G, Canada

M (Received 1 July 2021; accepted 2 August 2021; published 2 September 2021)

‘We study the thermalization of smeared particle detectors that couple locally to any operator in a quantum
field theory in curved spacetimes. We show that if the field state satisfies the Kubo-Martin-Schwinger
condition with inverse temperature f§ with respect to the detector’s local notion of time evolution, reasonable
assumptions ensure that the probe thermalizes to the temperature 1/ in the limit of long interaction times.
Our method also imposes bounds on the size of the system with respect to its proper acceleration and
spacetime curvature in order to accurately probe the Kubo-Martin-Schwinger temperature of the field. We e
then apply this formalism to a uniformly accelerated detector probing the Minkowski vacuum of any CPT
symmetric quantum field theory, and show that the detector thermalizes to the Unruh temperature,
independently of the operator it couples to. This exemplifies yet again the robustness of the Unruh effect, even
when arbitrary smeared detectors are used to probe general operators in a quantum field theory.
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