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Introduction
@00

QFTs from geometry

In this talk | will view string theory as a tool for associating
Quantum Field Theories (QFTs) 7[X] to (singular) manifolds X.
This point of view goes under the name of “geometric engineering”.

To any given theory 7[X] we can associate a “symmetry TFT"
Symm|[7[X]], a TFT in one dimension higher encoding symmetries
and anomalies of the theory, and all its gaugings. (See Justin’s talk
on Monday.)

It turns out that Symm|[7[X]] is significantly easier to understand
than T[X] itself, so our goal will be to construct
Symm|X | == Symm|7 [X]] directly from the geometry.
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Why

Given a Lagrangian description of 7[X] it is in principle possible
(but subtle) to find its symmetries, and in this way reconstruct
Symm|[X].

Nevertheless, in the context of geometric engineering having a
Lagrangian description of 7[X] is more the exception than the rule:
what we know is the topology (and sometimes metric) of X.

It is precisely in the cases where we don't know a Lagrangian that
the information about symmetries and anomalies is most valuable.
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Why

A more formal reason to care about this problem is that it hints
towards a geometric version of the Landau paradigm: as we will see
the map X — Symm/[X] is very sensitive to the details of X.

Geometric Landau question

Can we reconstruct X (modulo string dualities) given Symm/[X]?

An a priori weaker form is that a subset of the data associated to
X, sufficient to reconstruct 7[X], is determined by Symm|[X]. But
the stronger form here seems plausible.

There is a categorical version of this question, where we ask about
some category associated to X instead. For instance, in some cases
we can associate a cluster category to X. The Grothendick group
of this cluster category is easy to read from Symm|[X|. [Caorsi,
Cecotti '17], [Del Zotto, IGE, Hosseini '20], [Del Zotto, IGE "22].
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Geometric engineering

For reasons of analytic control we want to impose restrictions on
the manifolds X that we consider. These are:

@ X is non-compact, to decouple gravity. To make our life
simpler I'll assume that X is a real cone over some base B.

o In order for the field theory to be supersymmetric, we assume
that X has reduced holonomy (Calabi-Yau, for instance).

For instance, if X is a complex two-fold, we will assume that it is
an ALE space of the form C*/I'y, with 'y € SU(2). This is a cone
over S /Ty, with I'y acting freely on S3. On C? the origin is fixed
by all elements of Iy, so we have an orbifold singularity there.

If we place IIB string theory (10d) on this geometry we obtain a
(2,0) SCFT g(2,0) in six dimensions, arising from modes at the
singularity. These theories are believed to be indexed by I'y, or
equivalently by an algebra g of type a,,, 0., ¢g, ¢7 or es.
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The (2,0) theory in 6d

This is a very important theory of a very strange kind: it is an
interacting conformal theory in six dimensions.

The existence of such theories is fairly surprising from a Lagrangian
point of view: by dimensional reasons any d-dimensional gauge

theory becomes free as we go to large distances. The (2,0) SCFTs,
on the other hand, remain interacting at all scales.

One important property of the (2,0) theory with algebra g is that
upon reduction on 7'* with complex structure 7 it gives rise to 4d
N = 4 SYM with algebra g and complexified gauge coupling 7. Let
me call this object g4.
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g4 as a relative theory

What | have just described fully specifies the behaviour of local
operators, but it does not fully fix the theory. For example it does
not fully fix the partition function on K3.

The right way of thinking about g4 is as a “relative theory” [Freed,
Teleman "12]: in physical terms it is a set of boundary gapless modes for
a TFT in one dimension higher (4 + 1 = 5 here). This TFT includes
information about the potential symmetries, anomalies and gaugings of
all theories with local dynamics given by g4. We refer to this TFT as
Symm|gy4].

Symmetry
theory

g4

Pirsa: 22060014 Page 8/46



Introduction
QQOe0

The absolute N/ = 4 theories

We can make obtain more familiar objects by introducing a second

gapped interface p between Symm|[g4] and an invertible TFT, the
anomaly theory.

Anomaly Symmetry
theory theory

P g4

Colliding p and g4 we obtain what we usually think of as N/ =4
SYM theories in d = 4. The possible choices of p were classified by
[Aharony, Seiberg, Tachikawa '13] (from a different viewpoint). The
connection with the picture above was essentially done (for SU(N)) in

[Witten '98], and extended to the 0,, ¢; cases in [IGE, Heidenreich,
Regalado '19].
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Back to 10d

Our starting point was not directly the 4d theory g4 on My, but
rather 10d string theory on My x T? x C?/I'y. How do we
reproduce the previous discussion from the string theory
perspective? Where is Symm|gy|?

My goal will be to derive Symm|g4| (*) without using any
knowledge about the Lagrangian of N = 4.

(*) In this talk | will work out some aspects of the symmetry
theories. Eventually we would like to have a complete description
as a fully extended TFT instead.
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The geometric engineering perspective

There are multiple formulations of string theory, connected by
duality. This means that they are all secretly the same theory, and
we have rules for mapping from one formulation to another.

In this talk | will work in the M-theory (D = 11) and IIB (D = 10)
duality frames. In either frame, the basic picture is the same. We
place the string theory on X?" x MP~2" where X?" is a
Calabi-Yau manifold of complex dimension n, which is also a real

cone with base B?"~1. There is a singularity at the base of the
cone, where we have a field theory 7[X?"] on MP—2",
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Branes

In the context of geometric engineering we treat the background
geometry X2" x MP~2" a5 given, and ignore its dynamics. All the
dynamical field theory behaviour comes from “(p-)branes” and their
associated fluxes moving in the given geometry.

“p-branes” are dynamical supersymmetric solitons, localised on
(p + 1)-dimensional manifolds SP*1. The spectrum of branes

depends on the theory:
o In M-theory we have M2 and M5 branes. (p =2 and p = 5.)

o In IIB we have Dp branes with p € {—1,1,3,5,7,9} and F1,
NS5 branes. In this talk | will focus on D3 branes, with p = 3.
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Fluxes
Each p-brane coupled electrically to some background (p + 1)-form
gauge field Cp4q
S—-...—I—/ Cp+1.
J Sp+1

We can measure the charge by integrating the field strength
E,12 = dCyy1 on a manifold RP~(P+2) |inking SP*! once in the
D-dimensional total space:

*FTJ+2 == 1 .
J RD—(p+2)

There is a duality relation on fluxes Fj,12 = xFp_(;12), SO we can
view this last equation as saying that the p-brane is charged
magnetically with respect to the dual gauge field C'p_,13):

/  Fp g =1.
J RP-(p+2)
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Blowing up the singularity
To see how the QFT arises, we can consider a family of smooth
Calabi-Yau spaces X., such that lim. .o X. = X. The singularity of
X arises from cycles in X, going to zero size.

As an example, consider the C?/Z,, singularity (for me

7

Lo = Z./nZ), with p € Z,, acting as

()= 2) 6

and w = exp(27i/n).

A family of spaces X, can be constructed by “blowing-up” the
singularity: the singular point gets replaced by n — 1 copies of S?
(of size ¢) intersecting according to the Dynkin diagram of A,,_;:

\ oV

S N S
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Light branes

Wrapping a p-brane on a small g-cycle of size ¢ gives a propagating
object in the field theory of dimension p + 1 — ¢ and mass ¢.

In the singular limit these objects becomes massless. Two examples:
o M-theory on C?/Z,, x R": M2 branes wrapping the S? cycles
appear as light particle states propagating on R”. In the
massless limit these give rise to Yang-Mills theory in 7d, with
the branes giving the non-abelian structure.

o 1IB on C?/7Z, x RY. In this case, if we wrap D3 branes, we get
light strings propagating in 6d. In the massless limit we have
the “non-abelian” (2,0) theory of type a,,_1.
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Heavy branes
So far | have described the dynamical states, but for understanding
the symmetry of the theory we are more interested in the behaviour
of extended defect operators.

We can view these as infinitely heavy objects inserted into our
configuration. The mass of the object, for the wrapped brane, is
proportional to the volume wrapped in X. So defects will arise from
branes wrapping non-compact cycles ending on the singular point.

12

“*
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Charge operators

Now we have a geometric characterisation of the defect operators
(generalised Wilson/'t Hooft lines) in the field theory as branes

wrapping non-compact cycles. These are in general not topological.

The symmetry operators are rather the flux operators measuring
which non-compact lines we have in our configuration:

(A

%
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Boundary conditions and flux non-commutativity

In order to define the string theory fully on the non-compact space
X2 x MP =27 we need to specify the boundary conditions at
infinity, which is (assuming MP~2" compact) of the form

B?n—l % MD—‘Z'n._

In the field theory these boundary fluxes appear as background
fluxes for higher form symmetries.

We do this by giving a state in the Hilbert space associated to
B?1 x MP =27 There are many subtleties in making this
statement precise, but the crucial one for us is due to flux
non-commutativity [Moore '04], [Freed, Moore, Segal '06], due to the
fact that the non-compact brane wraps a torsional cycle of B2"~! (the
base of X?"), and therefore the flux sourced by it should be measured on
a torsional cycle.
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Charge operators

Now we have a geometric characterisation of the defect operators
(generalised Wilson/'t Hooft lines) in the field theory as branes
wrapping non-compact cycles. These are in general not topological.
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The geometric engineering perspective

There are multiple formulations of string theory, connected by
duality. This means that they are all secretly the same theory, and
we have rules for mapping from one formulation to another.

In this talk | will work in the M-theory (D = 11) and IIB (D = 10)
duality frames. In either frame, the basic picture is the same. We
place the string theory on X?" x MP~2" where X?" is a
Calabi-Yau manifold of complex dimension n, which is also a real

cone with base B?"~1. There is a singularity at the base of the
cone, where we have a field theory 7[X?"] on MP—2",
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Non-commutativity of fluxes in M-theory

Let us put M-theory on M1, = Njp x R. We will try to understand
the Hilbert space H(N1g), or more precisely its grading by flux.
This was done in [Freed, Moore, Segal '06].

M-theory contains 3-form gauge fields C'3. The magnetic charge is
measured by the topological class of (3. To measure the electric charge,
recall that in the Hamiltonian formulation of the theory the canonical
momentum Ilc, conjugate to C5 is xG4. This is what we integrate to
measure the electric charge. If we express states in H(Njg) in terms of
their wavefunctions ¢(C3), then a state of definite electric charge is an
eigenstate of momentum:

{J?(C_Y'B + A) = E)Q‘JT? -L\f‘lg (\2!;\(]3(03)

for all flat . Here Q. € H™(N1p) is the electric charge.
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Non-commutativity of fluxes in M-theory

Let us put M-theory on My = Njp x R. We will try to understand
the Hilbert space H (A1), or more precisely its grading by flux.
This was done in [Freed, Moore, Segal '06].

M-theory contains 3-form gauge fields C'3. The magnetic charge is
measured by the topological class of (3. To measure the electric charge,
recall that in the Hamiltonian formulation of the theory the canonical
momentum Ilc, conjugate to C'5 is xG4. This is what we integrate to
measure the electric charge. If we express states in H(Njg) in terms of
their wavefunctions ¢(C'3), then a state of definite electric charge is an
eigenstate of momentum:

{J‘(C_Y’B + )\) - ezﬂ’i. 'J:'\"ID CQ{/\(J‘(CB)

for all flat . Here Q. € H"(Njp) is the electric charge.

So we cannot simultaneously measure electric and magnetic charges, if
there are flat topologically non-trivial A. This is the case iff
Tor 1—14(./\/'10_) —7‘: 0.
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Non-commutativity of fluxes in M-theory

This can be restated in terms of the flux operators, as follows: for
every o € Tor Hg(N1p; Z) = Tor H*(N10; Z) there is a unitary flux
operator ®,. Similarly for any

o' € Tor(H3(N1o;Z)) = Tor H' (N1g; Z).
These operators in general do not commute:

(I)O’(I)o" ks ezﬂi L(O‘,O-f)(I)O_I(I)U

where L(o, 0’) is the linking pairing on Nyg: choose n € Z such
that no = 0D. Then

, 1
(g, )= “B. o ‘mod .

,n'
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Non-commutativity of fluxes in M-theory

The pairing L(-, ) is perfect, which implies that if
Tor(H3(N1g; Z)) = Tor(Hg(N10;Z)) # 0, then for each o # 0
there is some o’ such that L(o,0") # 0, and thus

(I)a(por’ — egﬁi L(U’UIJ(I)J’(I)U 7& (I)O""(I)ﬂ‘ .

What this all implies, it that whenever Tor(Hs(Njo;Z)) # 0 it is
not possible to simultaneously diagonalize all ®,. In particular, it is
not consistent to take the simple “fluxless” choice ®, = 1 for all o.
We need to turn on some flux at infinity!
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Maximal isotropic subspaces

The final algebraic structure is fairly simple: we have a Hilbert
space, and a set of non-commuting operators acting on it.

We can specify a state in the Hilbert space as usual: by choosing a
maximal subspace Z C Tor(H3(N1g);Z) x Tor(Hg(Nio); Z) such
that the corresponding group of operators {®,} for x € Z is
abelian, and imposing that

®, |0; L) = |0; L) Ve el

In our M-theory setting, this corresponds to setting to zero on the
boundary as many fluxes as possible. (This is the sector with
vanishing ®.. flux, for non-zero background flux for the higher form
symmetries choose non-zero eigenvalues.)
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Back to M-theory on C*/I,

We want to consider M-theory on a space Mj; = C?/T'y x My

with I'y a discrete subgroup of SU(2). Let us apply our methods to
classify the space of possible theories for a fixed g.

We have that C*/I'y is a cone over S°/T', so in order to
understand the boundary conditions at infinity we want to quantize
the flux sector of M-theory on R x S?/T'y x M.
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Back to M-theory on C*/I,

Iy acts freely on S?, so m1(S?/Ty) = I'y. By Hurewicz's theorem

. -'m(SS/Fg) b
Hi(S2 /) = ‘ ' =
Y [m(S3/Ty), m(S3/Ty)]  °
The group ng is easy to determine:
& SU2) g o2
ZiN AN—'_I_ ZN
Binary dihedral Dic(og_9) | Dox | Zo @ Zo
Binary dihedral Dic(a,_1) | Dak+1 Zy
Binary tetrahedral 2T F Zs3
Binary octahedral 20 E- Lo
Binary icosahedral 21 Eg 1

Notice that [P = Z(G,), with G the simply connected Lie group
g g. g
with algebra g.)
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Back to M-theory on C*/I,

From here 7
HL(S2/E) = (2,55 0.7

To make my life easier | will assume that My is closed and has no
torsion in homology. Then Kiinneth's formula implies

Tor(Hs(M7 x §3/Ty)) = Ha(M7) ® H1(S?/Tg) = Hy(My) @ T3P
= Hy(M7;T3P).

and similarly
Tor(He(M7 x S3/Ty)) = Hs(M7;T2P).
Given elements 0, = a ® £,, 0p = b ® {p, we have the linking form

I—(Ua-g Ub) = ((L : b) |—S3/I‘El (Ea.a ﬁb) .
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Back to M-theory on C*/I,

It is not difficult to compute the linking form on S*/I';, we find:

B Gy B Lg
T SU(N) Zn ~
Dicuy -2y Spin(8N)  Zo @ Zo (0 ])

1 @
Diciyn_1y Spin(8N + 2) Ly :%

. _ 1 0
Diciyny Spin(8N +4) Zo & Zo ( )

T)i(:(-_..lj\f+1) Spin(8N + 6) D ll
2 Ee Z3 :
20) E~ L %
2] Bx 0 0
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Back to M- theory on C?/T,

Classification

The possible global forms of the d = 7 theories on M~ are given by
maximal commuting subspaces of Hy(My7; ng) X Hs(Mr; ng),
with commutators as above.

This result agrees with what one obtains from applying the ideas in
|Gaiotto, Moore, Neitzke '10], [Aharony, Seiberg, Tachikawa '13].
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Screened charges and non-locality of defects

An alternative derivation of this result can be obtained by thinking
about screening of line operators, closely following [Aharony, Seiberg,
Tachikawa '13]. This was done in geometric language in [Del Zotto,
Heckman, Park, Rudelius '15], where they introduce the defect group,
which in this case is

= HQ(C'Q/FG’S:S/FG) X HE((\Cz/FB"Sg/Fg)
- H(CT) H>(C?/T'g)

It is easy to show that

H(Ge b S
H>(C?/Ty)

2 b
= H1(S°/Ty) =T%.
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Relative theories

A high level summary of the previous discussion is that in geometric
engineering we have something like a "“QFT on a singularity relative
to the string theory bulk”: the full theory is only defined only after
specifying boundary values for the supergravity fields, even in the
deep IR limit where dynamical excitations for the bulk decouple.

In general this relates a D — 2n-dimensional field theory to a
D-dimensional supergravity bulk, with n > 1. | would now like to
relate this picture to the better understood notion of relative QFTs
by Freed and Teleman:

Anomaly Symmetry
theory theory

Page 34/46



The symmetry theory
(o] Telele]

How symmetry theories appear in string theory

The derivation in [IGE, Heidenreich, Regalado '19] uses a modified
asymptotic structure.

2
4
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How symmetry theories appear in string theory

The derivation in [IGE, Heidenreich, Regalado '19] uses a modified
asymptotic structure. This suggests a strategy for deriving the symmetry
theory associated to the field theory: dimensional reduction on the link of
the singularity: [Apruzzi, Bonetti, IGE, Hosseini, S. Schafer-Nameki '21]
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The anomaly theory

As an example, for 5d SCFTs the resulting symmetry theory is:
J We
+TyaBY UBY U Fé“))

where the K, 2, T coefficients are classical spin-Chern-Simons
invariants on the (5d) link.
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How symmetry theories appear in string theory

The derivation in [IGE, Heidenreich, Regalado '19] uses a modified
asymptotic structure. This suggests a strategy for deriving the symmetry
theory associated to the field theory: dimensional reduction on the link of
the singularity: [Apruzzi, Bonetti, IGE, Hosseini, S. Schafer-Nameki '21]

C /rv

X

In this picture the boundary conditions at infinity that we need to specify
in string theory correspond to p, so the object that arises naturally is the
symmetry theory. (“Symmetry inflow” instead of “anomaly inflow".)
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The anomaly theory

As an example, for 5d SCFTs the resulting symmetry theory is:
J We
+TyaBY UBY U Fé“))

where the K, 2, T coefficients are classical spin-Chern-Simons
invariants on the (5d) link. We can compute these geometrically
using differential cohomology (see also [Cvetic, Dierigl, Lin,

Zhang '21]), and in cases where there is a geometric interpretation we can

compare against field theory predictions. For instance, for SU(p), we get

: qpp—1)(p - 2) pp—1)
Ky = ged(pg ; Qg = - sl = , ,.
(11 = ged(p, ) ;5 Canr 6 2cd(p, q)3 L1l oS 5 acd(p, q)2

in agreement with [Gukov, Pei, Hsin "20].
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The BF theory

See Federico's talk tomorrow and Saghar's poster/gong-show talk
for the details of how to derive the anomaly part of the symmetry
theory.
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The BF theory

See Federico's talk tomorrow and Saghar's poster/gong-show talk
for the details of how to derive the anomaly part of the symmetry
theory.

In the full theory on S3/T" x X® there are non-commuting flux
operators [Freed, Moore, Segal '06] wrapping t x o2 and t’ x o5, with
t,t' € H(S*/T) =T2" and o; € H;(X?®). Their commutation relations
(on a spatial slice M7 of X?®) are

B(t x 02)D(t' x 05) = 2™ L2 TG (1w 5 )B(E x 73) .
3
S/rl M3z

‘s/ft
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2-groups

So far | have discussed higher form symmetries only, but the same
picture is expected to hold for the full symmetry structure of the
geometrically engineered theories.
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2-groups

Consider a theory with discrete 1-form symmetry I'") and a
connected continuous global 0-form symmetry .% () = F/C, where
F is the simply connected form of .%Z (). We define .Z(©) to be the
symmetry acting faithfully on local operators, or equivalently the
most general structure group that we can take for 0-form
backgrounds.
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Computation of 2-groups
The problem of computing 2-groups therefore reduces to the
computation of H{(L?) and H;(L? — S), for L the base of the
toric Calabi-Yau cone, and S a neighbourhood of the singular locus
in Le.
Thanks to toric technology developed in [IGE, Heidenreich '16] this
can be done easily by counting triangles. For instance, for SU(N)n

(0,N) (0.N)
S 3 J,-’f r:: N

3 /7
S” [Zan
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Conclusions

For geometrically engineered theories there is a close connection
between the symmetries of a theory and the geometry. But
crucially, the symmetries are often much easier to understand than
the field theory itself.

| have focused on the developments | understand best. There is a
lot of recent literature developing complementary approaches, and
older related literature on anomaly inflow. (Works by Andrea,
Dewi, Federico, |bou, Lakshya, Mathew, Marieke, Michele, Saghar,
Sakura, and many others)

We don't quite have a full systematic dictionary yet, but the
general picture is gradually becoming clear.
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