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Abstract: We identify infinitely many non-invertible generalized global symmetriesin QED and QCD for the real world in the massless limit. In
QED, while there is no conserved Noether current for the axial symmetry because of the ABJ anomaly, for every rational angle, we construct a
conserved and gauge-invariant topological symmetry operator. Intuitively, it is a composition of the axial rotation and a fractional quantum Hall
state coupled to the electromagnetic U(1) gauge field. These conserved symmetry operators do not obey a group multiplication law, but a
non-invertible fusion algebra over TQFT coefficients. These non-invertible symmetries lead to selection rules, which are consistent with the
scattering amplitudes in QED. We further generalize our construction to QCD, and show that the neutral pion decay can be understood from a
matching condition of the non-invertible global symmetry.
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Axial symmetry in QED .{- |

* Consider QED with a massless, unit charge Dirac fermion.

1 y
L= —E F* + iP(9, —iA,)yH¥

R
* The classical axial U(1),4 symmetry acts as

la
Waexp(?ys)‘{’ ; a~a+?2m

* Note that @ = 2m corresponds to the fermion parity, which is part of
the gauge symmetry.

* The Adler-Bell-Jackiw anomaly implies that the classical U(1) 4 axial
symmetry fails to be a global symmetry quantum mechanically.
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AB]J anomaly

* The ABJ anomaly was discovered in the late 60s to explain the neutral
pion decay, T° - y¥.

* It successfully determined the coupling

OFAF
87t2f,1,H

in the pion Lagrangian and predicted there are three colors of quarks.
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ABJ anomaly?

* Conceptually, there % something slightly counterintuitive though.
* Usually we celebrate when we discover the existence of a global symmetry.

* ABJ anomaly states that there is not a global symmetry that one would
have naively expected.

* So how come we can derive all these quantitative results from the absence
of a global symmetry?

* Of course, since the fine structure constant is small, we can treat the
electromagnetic gauge field as background. The “F A F term follows from

the Wess-Zumino term, which captures all the ‘t Hooft anomalies, in the
chiral Lagrangian [Witten 1983].

* But wouldn’t it be nice if we can reinterpret these classic results from the

existence of a generalized global symmetry (rather than the absence
thereof)?
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Non-invertible global symmetries

* We will show that the continuous, invertible U(1) 4 axial symmetry is
broken by the ABJ anomaly to a discrete, non-invertible global
symmetry labeled by the rational numbers.

* In the pion Lagrangian, the coupling m°F A F can be derived by
matching the non-invertible global symmetry in the UV QCD.

* Therefore, the neutral pion decay m° — yy can be understood in
terms of the non-invertible global symmetry.
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QED

* In QED, the axial current is
jii = Pysv, ¥
* It obeys the anoma’l‘ous conservation equation

) 1
d*] =mF/\F

* Naively, we can define the symmetry operator

Ua(M) = exp(5 6, * j*)

* However, it is not conserved (topological).
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QED

e U,(M) = expg?a fﬁM * j4) is not conserved.

* Let us try a gauge non-invariant current [Adler 1969]:
; f |
*x 4 =x j4 — ——AdA
J J 412
* It is formally conserved, d * 4 = 0.
* But the symmetry operator is not gauge invariant on a general three-
manifold M
1

Ue(M) = exp[5 §, (xj* — ;5 AdA)]
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Dilemama

Operator Gauge-invariant? Conserved
(topological)?

Ua(M) = exp(=§,, * j*) : X

Ua(M) = exp[5 6, (xj4 — - AdA)] v
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Rational angles

* Let us be less ambitious, and assume the axial rotation angle is a

fraction:
21

(4 ;.AdA)]
41N,

* The operator Uz_n(M) is still not gauge invariant because of the

N
fractional Chern-Simons term.
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Fractional quantum Hall state

i
€ e AdA”
. AN J,,

* In condensed matter physics, this action is commonly used to describe the
v = 1/N fractional quantum Hall effect (FQHE) in 2+1d.

* It is however not gauge invariant. Fortunately, there is a well-known fix to
this issue.

* The more precise, gauge invariant Lagrangian for the FQHE is
[
—adA)

[
—ad
(4Ha a+

M 2T

where a is a dynamical U(1) gauge field living on the 2+1d manifold M.
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Fractional quantum Hall state

i iN 1
“— —_QMdA” » ¢ (—ada + — adA
4mN }QM drelolieia)

* Naively, we integrate out a to obtain

({4 keI A
£

* Substituting this back to the Lagrangian returns the original fractional
Chern-Simons term.

* This is illegal, however, since both a and A are properly quantized gauge
fields obeying . da € 2nZ and §, dA € 2nZ. We can’t divide them by N.

* The Lagrangian on the right is the precise, gauge invariant description of
FQHE.

n
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Back to QED

* Motivated by the discussion of FQHE in 2+1d, we define a new operator
Dy /n(M) in 3+1d QED: k

Uzn(M) = eXP[
N

] [N l
M) = A+ -—ada +—adA
DI/N( ) exp[ 0 (ZN * ] +4Ha a-+ ZHCI )]

* Here a only lives on the three-manifold M and A is the bulk
electromagnetic gauge field. Here and throughout we omit the path

integral over a in the definition of Dy /.
* Reminiscent of the n’ sheet in [komargodski 2018).
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Non-invertible global symmetry

2mi ., iN i
D1(M) =exp[® (5=*j%+-—ada+-—adA)]
N

y 2N 41 21T

* This new c'fperator is clearly gauge invariant because the Chern-
Simons terms are properly quantized.

* Itis conserved (topological). This is proved from gauging a discrete
magnetic one-form symmetry. More on this later.

* The price we pay is that it is not an invertible symmetry.
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Non-invertible fusion

UL SLLIPE SR
oy * I+ g ada Zn:a )]

27l IN

Dl (M) = ——x jA -
1/N( ) exP[M( ZN*J i

Din(M) = exp[

—ada — Z—adA)]

* The parallel fusion between D, /5 and Dl/N is not the identity:

Dy /nxD},y = exp[$, (5 ada — -ada + - (a — @)dA)] =

* We see that D, /y is not a unitary operator.

C+1
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[Roumpedakis-Seifnashri-SHS 2022]

Higher gauging .

@wwf/v = exp[$,, (ﬂada = ‘ﬂa'da + i(a —a)dA)] =

* Cisthe condensatlon operator/defect from higher gauging of the Zy
subgroup of the U(1) magnetic one-form symmetry.

* DEd uglng [Roumpedakis-Seifnashri-SHS 2022]: gauge a q-form symmetry only
along a codimension-p submanifold in spacetime. Higher gauging
does not change the bulk QFT, but generates a codimension-p
topological defect — the condensation defect [kong-Wen 2014, Else-Nayak 2017,
Gaiotto-JohnsonFreyd 2019,...].

* C(M) arises from one-gauging the Zy magnetic one-form global
symmetry along a codimension-one manifold M.
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Non-invertible global symmetry

as

* |t is easy to generalize this construction to an arbitrary rational axial
rotation @ = 2np/Nwith gcd(p,N) = 1.

PN =
Dy (M) = expl§ (S# 4 + AVP[dA/N])
M

N
where (AN,IJ is the 2+1d minimal ZN TQFT [Hsin-Lam-Seiberg 2018].

* Therefore, the continuous, invertible U(1) 4 axial symmetry is broken
by the ABJ anomaly to a dlscrete non- invertible global symmetry

labeled by the rational numbers £ e Q/Z. It’s a generalization of the
construction in [Kaidi-Ohmori-Zheng 2021]
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Non-invertible global symmetry

Operator

Gauge-
invariant?

Conserved
(topological)?

Invertible?

| LE 4 <3
|
|
|
|
{ {i .
‘— .

Ua(M) = exp(5 §,, * /)
R

v

X

U4 (M) = exp[= §, (x j* — — AdA)]

X

v

DL(M) -

2mi '
exp[f (—*j + fada + ZHad/l)]
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Non-invertible global symmetry .- m |

* |t is easy to generalize this construction to an arbitrary rational axial
rotation a = 2mp /N with gg¢ d(p,N) =1,

Dn (M) = exp[f ( *] + ANP[dA/N]]
where clep is the 2+1d mlnlmal £N TQFT [Hsin-Lam-Seiberg 2018].

* Therefore, the continuous, invertible U(1) 4 axial symmetry is broken
by the ABJ anomaly to a d|screte ‘non- invertible global symmetry

labeled by the rational numbers — € Q/Z. It’s a generalization of the
construction in [Kaidi-Ohmori-Zheng 2021]
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Back to QED

* Motivated by the discussion of FQHE in 2+1d, we define a new operator
DI/N(M) in 3+1d QED:

Uzn(M) = exp[
N

2ni [ AdA
—-* — c——
) GN T T gy A4
|}

. il .,  IN [
DI/N(M) = exp[ 9 (m*_] +@ada +£Qd‘4)]

* Here a only lives on the three-manifold M and A is the bulk
electromagnetic gauge field. Here and throughout we omit the path

integral over a in the definition of Dy /.
* Reminiscent of the n’ sheet in [komargodski 2018).
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Non-invertible global symmetries

A

Why do these non-invertible topological operators qualify as
generalized global’symmetries?

See Kaidi’s talk yesterday for a review!
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Non-invertible operators as symmetr

Why do these non-invertible topological operators qualify as generalized
symmetries?

1. Some non-invertible symmetries can be gauged [Brunner-Carqueville-Plencner 2014].

2. They can have generalized anomalies, which lead to generalized ‘t Hooft
anomaly matching conditions. They result in nontrivial constraints on the
renormalization group flows [chang-Lin-SHS-Wang-Yin 2018, Thorngren-Wang 2019+2021,
Komargodski-Ohmori-Roumpedakis-Seifnashri 2020,,,,].

In quantum gravity, the no global symmetry conjecture is argued to be
generalized to the absence of invertible and non-invertible global
S\/mmetries [Rudelius-SHS 2020, Heidenreich-McNamara-Montero-Reece-Rudelius-Valenzuela 2021,
McNamara 2021].

Well, that’s (basically) in the name of this Simons collaboration:
Global Categorical Symmetries
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Non-invertible symmetries in 3+1

* In the past year, there has been a lot of developments on constructing
nch-invertible symmetries in familiar 3+1d lattice and continuum

gauge theories [Koide-Nagoya-Yamaguchi 2021, Choi-Cordova-Hsin-Lam-SHS 2021+ 2022,
Kaidi-Ohmori-Zheng 2021, Bhardwaj-Bottini-SchaferNameki-Tiwari 2022, Hayashi-Tanizaki 2022,

Kaidi-Zafrir-Zheng 2022, Choi-Lam-SHS 2022, Cordova-Ohmori 2022].

* Some of these constructions apply to QFTs that are invariant under
gauging a discrete one-form global symmetry G(1 (possibly with a
discrete torsion phase).

QFT QFT/G™M

Topological Dirichlet b.c.
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Gauging in half spacetime in QE

* We will assume there is no monopole at the energy scale we are interested in.

* QED has a magnetic" U(1)™ one-form symmetry generated by a conserved two-
form current [Gaiotto-Kapustin-Seiberg-Willett 2014]
1
im — — » F 3 d *x M =
J P J
* When we gauge the ZS) subgroup with a specific choice of the discrete torsion

phase that depends on p, the net effect is to shift the 8 angle by
-0 —2np/N

* We can then undo this shift by performing an axial rotation on the fermions.

* The non-invertible symmetry D,/ is realized by composing the gauging of val)
and an axial rotation in half of spacetime, and impose the Dirichlet boundary
condition.
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Gauging in half spacetime in QE D

* Since the Dirichlet boundary condition
for a discrete gauge theory is topological, (a)
this provgs rigorously why D,/ is
conserved (topological).

* From the gauging construction, we see
that D),/ acts invertibly on the fermions
as an axial rotation, but non-invertibly
on the ‘t Hooft lines H(y) by the Witten
effect:

Hy) > ) exp(r f F)
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Electron mass l( |

* Let us explore various consequences of the non-invertible symmetry in
QED.

* Naturalness [‘t Hooft 1980]: Impose a global symmetry group G. The
Lagrangian should include all G-invariant terms with coefficients of order
one with no fine-tuning.

. 1 o .
* QED Lagrangian: £ = @F;WF“V + 14’(8# - lA#)]/”‘P
* The electron mass term mWPW¥ violates the non-invertible global symmetry.

* Therefore, electron is natyrally massless in QED because of the non-
invertible global symmetry.

* See [Cordova-Ohmori 2022] for more discussions.
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‘t Hooft Naturalness

ITI2. NATURALNESS I¥ QUANTUM ELECTRODYNAMICS
o

Quantum Electrodynamics as a renormalizable model of
electrons (and muons if desired) and photons is an example of a
"natural" field theory. The parameters a, me (and m,) may be small
independently. In particular mg; (and m,) are very small at large u.
The relevant symmetry here is chiral symmetry, for the electron
and the muon separately. /e need not be concerned about the
Adler-Bell-Jackiw anomaly here because the photon field being
Abelian cannot acquire non—-trivial topological winding numbers

‘t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking (1980)
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Selection rule in QED

* The operator D,y acts invertibly on the fermions as an axial rotation
with a = 2np/N.

* The selectiog rule on the fermions on flat space amplitudes from
D,/ are the same as the naive U(1)4 symmetry.

* Note that there is no U(1) instanton in flat space because
m3(U(1)) = 0. .

* It implies that the total helicity of the electrons and positrons has to
be conserved in massless QED.
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Helicity conservation

For example, in the electron-
positron annihilation, the
helicities of the electron and
positron are opposite.

* The helicity conservation is
usually explained using gamma
matrices in QFT textbookg. It is
satisfying to see that there is an
underlying symmetry principle.

142 Chapter 5

IZI('IIII'HLH_\ Processes of (Eu.‘inl um Ele

massless. (The calculation can be done for lower energ
difficult and no more instructive.)’
Our starting point for both methods of calculati
section is the amplitude ]
b fod } ' ie? ¢ " { ’ e 1)
iMle (ple™(p) = p (K)u" (k7)) ~ (r-[p )=y m_,ul)(mﬂ{j‘-“r(‘{ J) (5.1
li‘
We would like to use the spin sum identities to write the squared amplitude
in terms of traces as before, even though we now want to consider only one
set of polarizations at a time. To do this, we note that for massless fermions,

] + 43 00 1 0
) (u 1./ 9 00

the matrices
(5.17)
are projection operators onto r ight- and left-handed -|)innr.\ I'I‘.\|)(‘l"i\'l']\. Thus

if in (5.1) we make the replacement

v(p )y u(p) — v(p ]‘,"( = -)rr{p‘r.

the :|||||)|i1||||1‘ for & right-handed electron s unchanged while that for a left-

h;llll!l‘(i I'Il'l't'i'llll I)G'l'llllll'.‘v L0TO .\:lllt' |ll.'l| ‘\ill!'!'

P i I""’ { # l'ﬂ". 0,
v(p I""( = )u(pl = 1 [p!( 5 )“ yHu(p),

this same replacement imposes the requirement that v(p') also be a right-

(H.18)

handed spinor. Recall from Section 3.5, however, that the right-handed spinor
I‘E;I‘: l'ntll'\|l¢n|l1\ toa frff handed POsILron. Thus we see that the annihilation
amplitude vanishes when both the electron and the positron are right-handed.
In general. the amplitude vanishes (in the massless limit) unless the electron
and positron have opposite helicity, or equivalently, unless their spinors have
the same helicity, @

Chapter 5 of Peskin&Schroeder
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U(1)gn |

 Belowkhe electroweak scale, the massless QCD Lagrangian for the up
and down quarks has an axial global symmetry (corresponding to °)

U(as: () - expliaysos) ()

* |t suffers from the ABJ anomaly with the electromagnetic U(1)gy
gauge symmetry.

* By the exact same construction, we conclude that there is an infinite
non-invertible global symmetry D,,/y in the UV QCD from U(1) 45.

* How does the IR pion Lagrangian capture this non-invertible global
symmetry?
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q

* The pion Lagrangian

1
LIR — E(aun,?)z -+ lg T[OF ANF + -

* The pion field is compact, ° ~ % + 27 f,,, where f, ~ 92.4MeV .
* The non-invertible global symmetry D, /y shifts the pioﬁ field,
% - 0 — Zn%fn.

* The equations of motion in the presence of the non-invertible global
symmetry D, /y fix the coefficient g for 7°F A F, which gives the
dominant contribution to the neutral pion decay 7° - yy.
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]
LIR — _(a 77.'0)2 + lg HOF/\F

21i a3
Dl/N(M) = exp| ~*J

x=0
* Inserting D,y atx = 0 as a defect, the equations of motion are
» % EOM: 7 ot =B eo- -—fn
* a EOM: Nda+F =0 :
« A EOM: 21g(m°% . apt — B mo=)F = ﬁda

iN .
d —adA
4na a+zna )]

* Combining the above, it fixes g = e
w
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Pion decay ' |

* Conventionally, the pion decay 7% — yy is explained by the ABJ
anomaly. Of course, since the fine structure constant is small, we can
treat the electromagnetic gauge field as background, then the T°F A
F follows from the ‘t Hooft anomaly matching.

* We have provided an alternative explanation for the pion decay as a
direct consequence from matching the non-invertible global
symmetry in the UV QCD.

* The non-invertible glotyal symmetry gives an invariant
characterization of the ABJ anomaly in terms of the existence of a
generalized global symmetry, rather than the absence thereof.
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Goldstone boson?

* Even though the non-invertible symmetry is discrete, it is labeled by
rational numbers, which are dense in U(1). It’s “almost” a continuous

symmetry.

* Usually we think of 7° as the Goldstone boson of the anomalous U(1) 43
symmetry. It is so light but has a non-derivative coupling m°F A F at the
same time.

* Perhaps % can be viewed as a “Goldstone boson” for the non-invertible
global symmetry D,, /.

* Indeed, the non-invertible symmetry shifts the pion field:

21T
05l __'—Bfn'

Dp/N T N
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Fusion algebra over TQFT coeffici . f |

* Forodd N, D,y (MIxD; (M) = ANZ[M] Dy/n(M)
* The fusion “coefficient” is not a number, but a 2+1d TQFT.

* Generally, the fusion “coefficient” of d-dimensional topological
defects is a d-dimensional TQFT [Roumpedakis-Seifnashri-SHS 2022, Choi-Cordova-
Hsin-Lam-SHS 2022].

Fusion algebra over TQFT coefficients

D(M)XD' (M) = T (M) D" (M)
Partition function

ofaTQFTT on M
* What does it mean mathematically??
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Fusion of topological lines

* Example: When the topological defecr.? are lines, the fusion coefficients N, are non-
negative integers. The fusion algebra i$ a unital Z . -ring (plus some other conditions):

LoXLy = z Nap Lc ab € Lo

c
* The fusion coefficient NS, € Z.q should be viewed as a 0+1d topological quantum

&

mechanics (i.e., a free qudit) with an N, -dim Hilbert space.
* For higher dim topological defects, the fusion coefficients are TQFTs, so
TQFTs are categorical generalizations of non-negative integers

3.1. Definition of a Z ,-ring

Let Z, denote the semi-ring of non-negative integers.

DEFINITION 3.1.1. Let A be a ring which is free as a Z-module, Eti ngOf—GE|aki—N | kshych_ostrik

(1) A Z,-basisof Aisabasis B = {b,},e; such that b;b; = 3, ., ¢¥by, where i
ez, Tensor Categories
(i) A Z, -ring is a ring with a fixed Z ;-basis and with identity 1 which is a
non-negative linear combination of the basis elements.
(iii) A wnital Z, -ring is a Z ,-ring such that 1 is a basis element.
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Fusion algebra over TQFT coeffici

* Forodd N, Dy ,ny(M)XDy /(M) = AN?[M] Dy /n(M)
* The fusion “coefficient” is not a number, but a 2+1d TQFT.

* Generally, the fusion “coefficient” of d-dimensional topological
defects is a d-dimensional TQFT [Roumpedakis-Seifnashri-SHS 2022, Choi-Cordova-
Hsin-Lam-SHS 2022]: Ly

Fusion algebra over TQFT coefficients

D(M)XD' (M) = T (M) D" (M)
Partition function

: ofaTQFTT on M
* What does it mean mathematically??
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Conclusion 2 .{ |

* In massless QED and QCD, the continuous, invertible U(1) 4 symmetry is
broken by the ABJ anomaly into a discrete, non-invertible symmetry D,, /y

labeled by rational numbers.

D1(M) = exp[
N

)
—ada —a
TR 2
* The non-invertible symmétry is a composition of the naive axial rotation
with a fractional quantum Hall state.

* To put it in the maximally offensive way, the neutral pion decays ° = yy
because of the non-invertible global symmetry.

* The axion-Maxwell theory has non-invertible global symmetries that shift
the axion [Cordova-Ohmori 2022].
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Conclusion “{

* In massless QED and QCD, the continuous, invertible U(1) 4 symmetry is
broken by the ABJ anomaly into a discrete, non-invertible symmetry D,, /y
labeled by rational numbers.

D1 (M) = exp[
N

2T IN

— —adA
N k7 +4 ada+2nad )]

* The non-invertible symmétry is a composition of the naive axial rotation
with a fractional quantum Hall state.

* To put it in the maximally offensive way, the neutral pion decays 7° - yy
because of the non-invertible global symmetry.

* The axion-Maxwell theory has non-invertible global symmetries that shift
the axion [Cordova-Ohmori 2022].
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Thank you!

2022 Mar

2022 May

Conserved
charges in
integrable
systems
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Non-inv
linesin
1+1d RCFT
2+1d TQFT

Non-inv
surfaces in
2+1d TQFT

klomnv op as 3+1d gauge Non-inv sym

generalized sym  theories from higher-
form sym

Constraints on RG

in 1+1d

Non-inv sym
in Nature

[ {43

Above | mostly focus on codim-1 non-inv op.
Many many other developments not listed.
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