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Abstract: "Motivated by applications to soft supersymmetry breaking, we revisit the Seiberg-Witten solution for N=2 super Y ang-Mills theory in
four dimensions with gauge group SU(N). We present a simple exact Taylor series expansion for the periods obtained at the origin of moduli space,
thereby generalizing earlier results for SU(2) and SU(3). With the help of these analytic results and others, we analyze the global structure of the
Kahler potential, presenting evidence for a conjecture that the unique global minimum is the curve at the origin of moduli space.

Two applications of these results are considered. Firstly, we analyze candidate walls of marginal stability of BPS states on special slices for which
the expansions of the periods simplify. Secondly, we consider soft supersymmetry breaking of the N=2 theory to non-supersymmetric
four-dimensional SU(N) gauge theory with two massless adjoint Weyl fermions (""adjoint QCD""). The Seiberg-Witten Kahler potential and strong
coupling spectrum play acrucia rolein this analysis, which ultimately leads to an exploration of the adjoint QCD phase diagram.”
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Solving for exact low energy dynamics with supersymmetry

* Seiberg and Witten famously solved for the low energy effective
QFT on the Coulomb branch of pure SU(2) N’ = 2 gauge theory
in four dimensions.

» Today we revisit the pure SU(N) solution.
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The effective action on the moduli space

* The Coulomb branch M is N — 1 complex-dimensional,
described by gauge-invariant coordinates u,,.

« At a generic point, SU(N) — U(1)¥~! and the low energy
dynamics are described by abelian vector multiplets A;—;,  ~n_1
with leading interactions are determined by the holomorphic F(A).

* The Kadhler potential is given in terms of F(A) by,
e - 0F(A)
K(AA) = %Im (AI oA, )
K determines the metric on M,

’K 1
Gils e sl i) Gl SRS )
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The Seiberg_\/\/itten solution [Seiberg, Witten '94][Argyres, Faraggi "94]

[Klemm, Lerche, Theisen, Yankielowicz '94]

* The solution is given in terms of a set of 2(N-1) holomorphic
special coordinates ap;s(u), ar(u), where ap;y = 0F(a)/0ay.

* These are the periods of a meromorphic one-form Asw on a
canonical basis of homology cycles (A;, By) of a family of
curves C(u),

1 1

ar=is= AswNann — - = Asw
Tt Ja, 2m /g,

 For given moduli, C(u) is given by:

N-2
2= A(z)2 — A%V, A@@)==z" - Z Un 2"

n=0
.’I:A’(:E)d.‘x

with ASW =
Y
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Computing the periods is a challenge

* In SU(2), (ap,a) are given by hypergeometric functions , F1.
[Seiberg, Witten '94]

* In higher N they can be formulated as solutions to Picard-Fuchs
differential equations. [Klemm, Lerche, Theisen '95][lto, Yang *95]...

* In SU(3), in certain regions (apy,a;) can be expressed as
Appell F4 functions, defined

Fy(a,b,c1,c0; Z ?{’5;’35“’*;2&3‘;32 B Fi(a+n,b+n;c; )

* One of our key results is a simple, exact Taylor series expansion
for the periods in the region near the origin of M, generalizing
the earlier results for N=2 and N=3. [D’Hoker, Dumitrescu, EN-to appear]
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What do we hope to leam?

* The region near the origin is at strong coupling.

* The masses of BPS states in this chamber are determined by
the (apr, ar) periods, which we’ve computed.

* These BPS states can decay on walls of marginal stability.

lu

weak
strong coupling
" coupling '

[Seiberg, Witten "94][Bilal, Ferrari '96]

Motivating question: can we obtain more insight into the
border of the strong coupling region for higher N?
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Probing the IR phase of non-supersymmetric QFIs
N=2: [Cordova, Dumitrescu '18] N>2: [D’Hoker, Dumitrescu, Gerchkovitz, EN-to appear]

N = 2 super Yang Mills with G = SU(N)

UV Vewsy ~ M2Trog
(¢ the vector multiplet scalar)

IR

SU(N) gauge theory with N¢= 2 adjoint Weyl fermions A\’ "*

« Standard lore suggests a phase in which (trA\*\’) # 0, leading to
chiral symmetry breaking and confinement.

for N=2 see also: [Unsal '07][Bi, Senthil ’18][Anber, Poppitz '18][Cordova, Dumitrescu *18]

Motivating question: Can we use the embedding in SUSY to
constrain the IR phase of this non-supersymmetric QFT?
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The role of the Kahler potential

* The SUSY-breaking deformation can be tracked on the
Coulomb branch, where it is identified with K.
[Luty, Rattazzi 99][Abel, Buican, Komargodski ’11][Cordova, Dumitrescu ’18]

* Then, the global structure of the Kéhler potential can inform us
on the possible vacuum structure of adjoint QCD.
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Qutline for the rest of the talk

) A Taylor expansion of the (ap;(u), ar(u)) periods near the
origin of the Coulomb branch.

Il) What we learn about the Kahler potential for N=2, N=3, N>3.

lll) An application to analyzing walls of marginal stability near the
strong coupling chamber in SU(3).

IV) An application to soft supersymmetry-breaking.
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) A Taylor expansion of the periods around
the origin of moduli space
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The curve at the origin

« The Zyn-symmetric curve is y? = 22V — 1, with branch points at

2w

2N-th roots of unity € = e2~,
\ Hl El
/ Z :

Conventions (N=3): 3
2 i X

A - A,
- i L S_x‘ %2’ :
S @

'..4\\ BL
(A7,By) =01 N / !
NANANNANA

/ 4
64 E €

Az

1 i
» The periods are then determined in terms of Q(&) = 9mi / AW,
0

I
a;r=2) {7 N -Q D)}, ap;=2{QE)-Q(E )}
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The curve at the origin

« The Zyn-symmetric curve is y? = 22V — 1, with branch points at

2w

2N-th roots of unity € = e2~,

Conventions (N=3): .

2 Hl fl
- g .
A-"‘\‘_)_ 5 : g 1 : All
7

'
(o

/

N g
AI:ZA‘] 63""3-8
=

o B:
(A1, Bj) =61 3 \\' , / i
NANNANN
e - &

A 3

1 £
» The periods are then determined in terms of Q(&) = o f AW,
0

I
ar=2) {QEE)-Q(?} , apr=2{Q(") - Q' M)}
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A Taylor expansion of the periods  [D’Hoker, Dumitrescu, EN-to appear]

» We find a Taylor series expansion of Q(&) in powers of u,,

n=0,,--- , N=2

Vi,m(§) = {:NM+L+N+1 {QM(LH)/N

YRCE P(L;r-l )I\(NJW-_L-I)2Sin2 (7T NJL'I-LQI)

2N 2N

N-2
M= ¢
j=0

* This form of the expansion is optimal, as the coefficient of each
monomial in u,, consists of a single factorized expression.

* These functions are a nontrivial generalization of Appell functions.
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Simplification on a special slice

* The sums reduce to hypergeometric functions on the slice
parameterized by only wg,

Q(f) :€Q1 = é'NJF]' QN-q-l for Un£0 = 0

~

Ql Un « N=1 N—l.g.u‘ﬁ)

el 9
_magaun)

* For N=2, these reproduce the well-known expressions.
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Reproducing Appell functions for N=3

* For instance, in SU(3) there are two moduli vy = v, u; = u, with
y2 = (:1:3 - UL — 1;)2 -1

* Decomposing the series into irreducible representations of Zg,
we recover the Appell functions,
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Convergence of the period expansion for N=3

* The region of absolute convergence of the Fj is

3
o+ Vv? <1

which extends to the multi-monopole points (v = 0, % =1),
and to the Argyres-Douglas points (v? =1, u = 0).
[Douglas, Shenker '95][Argyres, Douglas '95]

* These can also be analytically continued to regions of large u
and small v, and vice versa.

* On the special slices when either u or v is zero, the F4's reduce
to 2F1’s, and we have full control of the analytic continuation.
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) A study of the Kahler potential
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Computing the Kahler potential [D’Hoker, Dumitrescu, EN-to appear]

* The Kéhler potential is determined in terms of the periods as

K takes a diagonal form

2N2N 1

,r
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Computing the Kahler potential

 Another useful quantity is K /0u,,. This can be computed using
the identification of the derivatives of Agw with the holomorphic
abelian differentials w,,,

O Ju; 1)
pum—— ﬂ d - . umm— n
R %A[ .

* Exploiting this, the derivatives are recast as surface integrals,

SRR fA/\@
8’17;71—1671'3 b &

* In addition to analytic applications, this form is useful for
numerical evaluations of K.
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The Kahler potential for SU(2)

* For SU(2), K is convex with a single global minimum at the
origin of moduli space.

dyon poin

0.00

Bl azzi '99] [Cordova, Dumitrescu ’18]
“« b » B
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Results for higher N

* The symmetric point is a stationary point. It lies at K e

Un=0

* There is a region around the origin for which K is negative.
The multi-monopole points lie on the boundary of this region.

* For instance, in SU(3):

Im(u)=Im(v)=0

multi-monopole
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The structure of the Kahler potential for SU(3)

* One can visualize the boundary of the region for which K is
negative by numerically plotting K=0 contours on slices.

Im(u)
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Comments on stationary points

* Kis negative at an arbitrary stationary point.

* It is natural to conjecture that K is everywhere convex, such that
the origin is the unique minimum.

* We have numerical evidence for N=3, but in general have
only proven this on special slices.
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Il) An application to computing candidate
walls of marginal stability in SU(3)
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The condition of marginal stability

* The periods determine the masses of heavy BPS patrticles,
N-1

Zlp) = Y (9rapr +arar) . M) = |Z[p]

» A BPS state can decay into other BPS states when

M) = 3 Mui] = M[} ]

= arg(Z[u]) = arg(Z[u])

* For a given charge assignment, this condition carves out a real
codimension-1 subspace of the moduli space.
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Marginal stability in SU(2)

* For SU(2) this yields the curve Im(ap/a) = 0, which divides M,
[Seiberg, Witten ’'94][Bilal, Ferrari *96]

* This curve coincides with the K=0 curve in the u-plane,

Im(ap/a) =0 <« K ~Im(aap)=20
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The strong coupling chamber of SU(N)

* In the generalization to larger N there are many different curves

of marginal stability, and more exotic phenomena.
e.g. [Galakhov, Longhi, Mainiero, Moore, Neitzke ’13]

* In the strong coupling chamber there are N towers of N-1
mutually local dyons pim,

Hom.

HN—-1,m

[Lerche '00][Alim, Cecotti, Cordova, Espahbodi, Rastogi, Vafa '11]...
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The strong coupling chamber of SU(N)

* One member of each tower becomes massless at each of the N
multi-monopole points.

up =0 Mpgm|=c(N)Asin*, m=1,...,N-1

A

Mlpk, N2l ~ A %

— gap to lightest M[W] ~ £

[Douglas, Shenker ’95]

 {tn}

i =1 monopole point
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Candidate walls of marginal stability in SU(3)

* With our chosen basis, the strong coupling states in SU(3) have
central charges

Z = giap1 + g2ap2 + q1a1 + ga202

BPS state | (g1, 92; 91,92)
Ho1 (—110; —130)
02 (0,-1;0,1)
11 &y
H12 (0?13 —151)
a1 (0 1)
22 (2101 =1)

Pirsa: 22050069 Page 30/38



Pirsa: 22050069

A wall around the origin on the slice v=0

* By inspection, the periods on this slice are related as,
az(u) = —api(u) , ap2(u) = ai(u)
leading to a simplification of the central charges,
Zp] = (g1 — a2)api(u) + (92 + @1)a1(u)
* As such, the problem becomes identical to SU(2), and the K=0

slice coincides with a wall of marginal stability.
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The u=0 slice

* On this slice the periods are related as

&2(’0) = (—:al('u) 3 GDQ(U) = Ezapl(’v) : = e}f;’[

* We find candidate lines of marginal stability emanating from the
Argyres-Douglas points, along which pairs of the BPS states
satisfy the threshold to form marginally stable bound states.

—~K=0 contour
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V) An application to soft-SUSY breaking

N = 2 super Yang-Mills with G = SU(N)
UV Vewsy ~ M°Tro¢

IR

N¢= 2 adjoint QCD
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SUSY_breaking at =mall A [D’Hoker, Dumitrescu, Gerchkovitz, EN-to appear]
(N=2: [Cordova, Dumitrescu ’18])

« At small M, K determines the potential Vsysy ~ MK

* Our evidence then suggests that the potential has a single
stable minimum at the origin of moduli space.

* The corresponding vacuum in in the Coulomb phase with
unbroken chiral symmetry.

« If this theory does confine and break chiral symmetry breaking,
a phase transition at larger M is required.
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Not the end of the story?

* A clue for what happens when M is increased comes from the
BPS spectrum in the strong coupling chamber.

* Naively, one expects that when M ~ M [ux1], the minimum at the
origin is no longer reliable.

* The BPS states that we encounter at larger M become massless
at the multi-monopole points; by expanding near these points,
we might access this new physics.
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A “dual” description of the large-M physics

* At these points, the light fields are captured by an effective
U(1)¥ ! abelian Higgs model, with:

Ym ~ apm abelian vector multiplet scalars

h=12 hypermultiplet scalars (the monopoles)

« Doing so, Vsusy ~ M2Tré¢ — M?K upon integrating out the
light monopoles = K determines the couplings in the potential.
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Key features of the phase diagram as a function of M

[D’Hoker, Dumitrescu, Gerchkovitz, EN-to appear]

Coulomb confining

: { -

0 alt=0 | hyy_1 #0 all By # 0

v v Tm
stable below M., S M[pgm] ~ Asin 5

* Increasing M, the monopoles become activated pair-wise in a
series of first order phase transitions.

» The monopole VEVs Higgs the U (1) p gauge groups. In the
large-M phase the Z Al, 1-form symmetry is unbroken, and the
theory is confining.
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Summary

* Revisiting the Seiberg-Witten solution to /' = 2 SU(N) super
Yang-Mills in 4d, we derive a useful Taylor series expansion for
the periods in the strong coupling chamber of moduli space.

» Using this and other results, we compute and analyze the Kahler
potential for general N, providing evidence for the conjecture
that the minimum is the unique minimum.

» These expansions are readily applied to an analysis of candidate
walls of marginal stability on slices of the SU(3) moduli space.

* The SU(N) Kéhler potential plays a distinguished role in a soft-
supersymmetry breaking analysis of the low energy structure of
adjoint QCD.

Thank you!
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