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Abstract: Considering the scale dependent effective spacetimes implied by the functional renormalization group in d-dimensional Quantum Einstein
Gravity, we discuss the representation of entire evolution histories by means of a single, (d+1)-dimensional manifold furnished with a fixed
(pseudo-) Riemannian structure.

We propose a universal form of the higher dimensional metric and discuss its properties. We show that, under precise conditions, this metric is
always Ricci flat; if the evolving spacetimes are maximally symmetric, their (d+1)-dimensional representative has a vanishing Riemann tensor even.
The non-degeneracy of the higher dimensional metric is linked to a monotonicity requirement for the running of the cosmological constant, which
we test in the case of Asymptotic Safety.

Furthermore, we alow the higher dimensional manifold to be an arbitrary Einstein space, admitting the possibility that the spacetimes to be
embedded have a Lorentzian signature, a prime example being a stack of de Sitter spaces. We "derive" the (A)dS/CFT correspondence by applying
the gravitational Effective Average Action approach, by solving the corresponding functional RG and the effective Einstein equations, and finally
embedding the 4D metrics into the one single 5-dimensional one. It is an intriguing possibility that in this way one might find a specific solution to
the general equations which coincides with the 5D kinematic setting which forms the basis of the conjectured (A)dS/CFT correspondence.

Zoom Link: https://pitp.zoom.us/|/92268060878?pwd=M 2E1S1RxcHBFbzBiblhpSUJCMWIzUT09
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Functional
Renormalization
Group

Asymptotic Safety

—_—

/ ‘Embedding of
the 4D slices into a 5D
manlfold

d+1.
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Embed the family of value of the RG parameter k: /
emerging 4D spacetimes into “Scale-space-time”
a single 5D manifold that

g I J encodes the complete

information about all scales.

Gravitational
Effective Average
Action

Scale dependent
spacetime metric k

Single foliated manifolh
the leaves of whose foliation \

describe the spacetime at a certain |
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Is it conceivable that there exist general reasons or principles, over and above
those inherent in the RG framework, that determine those missing ingredients
in a meaningful and physically relevant way?

unique 5D

trajectory of 4D + 0

geometries

geometry
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From trajectories to metric of higher dimensions

o (Functional) RG —> Scale dependent effective field equation (Einstein’s equation)

N\
{g/]:v }kZO @

Family of different Riemannian structures which furnish the same manifold ﬂ d

Trajectory k > (ﬂd’ g[,l[clj)
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From trajectories to metric of higher dimensions

o Re-interpret the RG parameter k as an additional coordinate (or its reparametrization z(k))
together with the x*’s
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From trajectories to metric of higher dimensions

o Re-interpret the RG parameter k as an additional coordinate (or its reparametrization 7(k))
together with the x*’s

determines
/- the signature /@
ds2,, = eN(x)?ds? + Dg, (1) [dx’" 3 Nﬂ(xf)dr] [dx” + N"(x’)d’c]
ADM formalism

-
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From trajectories to metric of higher dimensions

° Re-interpret the RG parameter k as an additional coordinate (or its reparametrization z(k))
together with the x*’s

determines
/- the signature /@
ds2,, = eN(x)?ds? + Dg, (1) [dx” 5 Nﬂ(xf)dr] [dx” + N”(x’)dr]
ADM formalism

-

The original manifold .Z ; is isometrically embedded in ./ 4, ; in a k-dependent way,
and so ./ ;. ; comes into being equipped with a natural foliation.

}

The RG trajectory is described by a single Riemannian structure in d + 1 dimensions

(M 411, D)
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From trajectories to metric of higher dimensions

o Re-interpret the RG parameter k as an additional coordinate (or its reparametrization z(k))
together with the x*’s

determines
/— the signature /@
ds2,, = eNG)2dr? + Dg, (xh [dx” i Nﬂ(xf)dr] [dx” + NV(xf)df]
ADM formalism

-
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From trajectories to metric of higher dimensions

Make contact with RG approach

(d)gﬂy(f’ xp) p— g/fy(xp)

k=k(7)

Assume that gfy(x”) and k(f) are known, externally prescribed functions.
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From trajectories to metric of higher dimensions

Make contact with RG approach
d ST
( )gﬂy(fs xp) - gﬂy(xp)
k=k(7)

Assume that g{fy(x”) and k(7) are known, externally prescribed functions.

What is missing?

N, N¥, sign(e)

These are properties of . ;.| which do not follow from the flow equations.
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From trajectories to metric of higher dimensions

Make contact with RG approach

(d)gﬂy(f, xP) = gﬁv(xp)
k=k(7)

Assume that g{fy(xp) and k(7) are known, externally prescribed functions.

- - - 7 -
Dl
N, N, sign(e) already exploited

These are properties of . ;,; which do not follow from the flow equations.

The possibility of performing
coordinate transformations has been

exhausted already in solving the k-dependent
effective field equations
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Running Einstein metrics

Solutions of rescaling type k-dependence resides in the conformal factor

Pure Quantum Gravity, Einstein-Hilbert truncation

— 1 4 — see
L= Ter o Jd x /8 ( R(g) +2A(k)) +

Effective field equations

2
=k v
RH [gaﬁ] = —d o A(k) 6‘u

The only input from the RG equations is the k-dependence of the running cosmological constant A(k).

A(k) = o [ A(K) |
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Running Einstein metrics
Solutions of rescaling type

Finding solutions let us fix some convenient reference scale such that reference metric
: : k (.p\ — -1 ,R¢.p k — oR
)= YO ) e il =gh
v = AL _ HEY
| Agl Hj

solve the effective field equations.
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Running Einstein metrics
Solutions of rescaling type

Finding solutions let us fix some convenient reference scale such that reference metric
. : k (+P\ — -1 ,R(,p k __ R
)= TOT ) e il =gh
v = AL _ HRY
| Agl Hj

solve the effective field equations.

The ADM metric reads: (d)gw('r, xP) =Y (kk('r))_l gfy(xp )
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Focusing on the lapse function
Nt =0, N = N(7)

dsﬁ 1= € N(;L')2 dr* + (d)gw(r, xPydx*dx"

}

dsg L1 =€ N(z)? dt? + Y(k(z))~! gfy(xp)dx”dx”
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Focusing on the lapse function
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Nt =0, N = N(r)

dsg =€ N(7)? dz* + (d)gw(t, xP)dx*dx”

}

ds(% L1 =€ N(z)? dt? + Y(k(z)) ™! gfy(xp)dx“dx”

What is a single pseudo-Riemannian manifold (./% d+1> (d“)gﬂ) capable of
doing for us that would not already be possible using the original stack of

unrelated manifolds (. 4, g:fv)? il
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Running Einstein metrics
Solutions of rescaling type

Finding solutions let us fix some convenient reference scale such that reference metric
: : k (.p\ — -1 ,R¢.p k — oR
SO =F0T ) e ghl,, =gf
v = A1 _ HE
| Agl Hj

solve the effective field equations.
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Focusing on the lapse function
Nt =0,N = N(7)

dsj,, = € N(v)* de* + g, (7, x")dx"dx"

!

dsj,, = € N(2)* de* + Y(k(z))™' gX (x")dx*dx"
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Focusing on the lapse function
Nt =0,N = N(7)

dsj,, = € N(v)* de* + g, (7, x")dx"dx"

!

dsj,, = € N(z)* dv* + Y(k(r))™' gx (x")dx"dx”

»-Riemannian manifold (./%a-
d not already be possible usir
related manifolds (4, g:fL'
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Distinguished higher dimensional geometries

POSTULATE 1 The cosmological constant A(k) is a strictly increasing function of k.

The higher dimensional metric can be chosen Ricci flat: (d"'l)RI ;=0

POSTULATE 2 gk, is maximally symmetric

The higher dimensional metric can be chosen Riemann flat: @*DR! k=0
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Distinguished higher dimensional geometries

Hubble length: Ly (o) = %

- 2)] 1/2

| _ |«
Introduce RG time £s.t. & = LH(kg-’:)) with §(k) = [ 2| Ak) |

Motivation: Y(k(é))-l — HI% H(k(é:))—2 — HI% LH(k(«f))z — HI% 52
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Distinguished higher dimensional geometries

Hubble length: Ly(k) = %

. 1)(d— 2)] 172

e G
Introduce RG time £s.t. & = LH(k(é:)) with (k) = [ 2| Ak) |

Motivation: Y(k(f))_l — HI% H(k(é:))—Z - HI% LH(k(f))z — H}% 52

N B Monotonicity of A(k) is crucial for the solvability of 5 — LH(k(é))
E =
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Distinguished higher dimensional geometries

Hubble length: Lyky = %

. 1)(d—2)] 172

. _ |
introduce RG time £ s.t. & = Ly(k(£))  with &(k) = [ 2| Ak) |

Motivation: Y(k(f))_l — HI% H(k(g))—2 — HI% LH(k(f))z — H}% 52

N B Monotonicity of A(k) is crucial for the solvability of f = LH(k(f))
N w

RULE N assumes simplest form as possible: | N(&) =1

ds§+1 =€ (dE)? + &2 H}% gﬁ,(xp)dx”dx”
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Equivalent forms

4 n: conformal time

dsﬁ = e 2Hir [e (dn)* + gfy(xp)dx”dx”]

§ IR cutoff

AR 1 2 2 Y
52, = e {e (EaklnlA(k)l) (LR dk) +gfy(xp)dx”dx”}
4 More general conformal form

@D (xMdxld’ = Q) [e ) + gh (x)dxtdx”
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Riccli tensor

@D Ml dx’ = Q) [e (@) + gh (x")dxtdx|

s <\ 2
GH+DRO = — ¢ d Q2 L
Q Q

(d+1)R0ﬂ - O, (d+1)Ry0 = (

r 7

. " 2
@rthpe = Q23 RH —e " | —+(d— 2)(—) -
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Riccl flathess

@Ry =0 = €=0 and Q(n) = et |

L3

s,y = €20 o dn)? +gl)dv'd| (R

Ao/ | Ay
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Riccl flathess

@R, =0 = e=0¢ and Q) = e

i d d
ds3, = e | (dn)? + gl ()dxvd | o

Strict flathess

@ORL =0 = R, =eH}|8, 5, 5,5,
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Riccl flathess

@R, =0 = e=o¢ and Q) = e

dsz,, = > [0 (dn)” + 8fy(xf’)dx”dx”] sk

Ao/ [ Ay

Strict flatness
@ORL, =0 = R, =eH}|8, 5, — 5,5,

The inclusion of the scale variable has “flattened” the curved spacetime. Resulting . ;. :

Sphericalsicingof %! ds7, | = (d€)* + E* dQ, (Ag > 0)
Hyperbolical slicing of M S = — (dE)? + &2 dH; 2 Ay < 0)
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trajectory of 4D
geometries

Einstein space

WEVARELLY
symmetric space

Monotonicity
of A(k)

Monotonicity
of A(k)

unique 5D

geometry

Ricci flat

Riemann
flat
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Asymptotic Safety

(Einstein-Hilbert truncation)

- | for 0< k<#™!
Typela| o=
yP +1 for k>l

Typella| 5= +1 for all k>0

Typellla| o= +1 for all k>0

I
\
>

Type IlIb

Reuter, Saueressig
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Caricature
trajectory

CHECK:
Monotonicity
of A

A(k) = | Aol - {

Al o |

L*k*

for

for

IA

P
vy =

= A

&0
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= 4 1.4 A
Caricature il e Y| for 0<k<Zk
: Alk) = | Ay - X
5F
Ila _
4r Meaning of the
monotonicity?
ina?
CHECK: o 3 Mode counting?
Monotonicity < a4l
of A®
1,
0 |
0 1 2 3 4 5
k
0OF
0.15
-0.5
_ _ 1 |
i« 0.1 e
& & -15!
O
0.05 5 .
-2.5
0_‘ 1 B -
0 1 2 3 4 5 0 1 3 4 5
k k
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Resulting e(k):

-1 for 0< k<!
Typela | ek) = {

+1 for k>¢1

Typella]| gk) = +1 for all k>0

Type llla| k)= +1 for all k>0
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My With (++++)

MyWith (+++4)
MywWith (++++)

MyWith (++++)

MsWith (- ++++)

MsWith (+++++)
MsWith (+++++)

MsWith (+++++)
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Change in the

topology?

Resulting &(k):
Signature

-1 for 0< k<t MywWith(+4+++) Mswith(—++++)
e(k)={

Type la . .

+1 for k>¢! MyWITh (+++4) MsWITth (+++++)
Typella| gk)= +1 for all k>0 MygWith (++++) MsWith(+++++)
Type llla| ek) = +1 for all k>0 MyWith (++++) MsWith (+++++)

This completes our demonstration that the asymptotically safe trajectories in 4D
do indeed comply with the Postulate 1 and are thus eligible for a geometrization
based upon the proposed Rule.
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Embedding in Einstein manifolds aters

Local vs. Global
embedding

2
RFV [gfﬁ] - (d—2) AR &uv AR >0 '
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Embedding in Einstein manifolds "ttt

Local vs. Global

embedding
2

R#V [gfﬁ] = (d _ 2) AR &uv AR >0

1 1
(d+1)RIJ = C5]J — A+DAr — E d-1)C= 5 dd-1) [— £ a12 + a22] HI%

R[,tl/po_ — H]% [65 6; _ 5(;: 6;/] — (d+1)R]]KL — C d—] [511( 65_ 51{ 5}%] Integration constants
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Embedding in Einstein manifolds aters

Local vs. Global

embedding
2

RFV [géeﬂ] = (d _ 2) AR 5”1/ AR >0

(d+1)RIJ_= Cé’IJ — @+DA — (d-— 1) C= l dd-1) [ £ a:,i o a2] H2

R[,ll/po- — H}% [55 5;’ _ 5(;: 5;’/] — (d+1)R]]KL — C d_l [511{ 6{_ 51{ 5}?] Integration constants

For every choice of {¢, a;, a,} and of the d-dimensional Einstein metric gfy.

the d+1-dimensional metric (d"'l)gn is maximally symmetric

if, and only if,
gjf,, is maximally symmetric.
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The candidates

Which principles and criteria can constrain or, in the ideal case, determine exactly a manifold 9
A 4., that geometrizes a given trajectory of Lorentzian spacetimes (./%’ 5 g:fy) ?

The higher-dimensional ./Z 4, ; should display the maximum amount of symmetry that is
consistent with the symmetry properties of the lower-dimensional metrics g}fy.

Starting manifold: dS,

If we are given a stack of de Sitter spaces (J% 4= dS, Y(k)_lgfy),

in which manifolds (./% d+1 (d“)gI J) can they possibly be embedded if we demand that the

L3
higher-dimensional scale-space-time, too, is Lorentzian and maximally symmetric?
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The candidates g o5axax’ = 2%0) [e@p? + gh (P)drtax”

AdS, ,and dS , arise {
E =

The scale coordinate has to be spatial.

1 d

1
Q —
1.0 = Sinh(Hny)

Pirsa: 22050058 Page 41/62



(d+l)gffd5(xK)dede Slnhz(H y) [(d},)Z + dx2 ] y € (—00,0)
R

Ad Sd+ 1
o 89 == i o v (L -

@+DAdS(xKYdx!dx! = (dE)* + sinh®(Hg &) dX2, £ € (0, o)
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(d+])gffs(xK)dxldx‘] — + dzgl N ¥ (= (—00, 00)

2
cosh?(Hyy) |(dy)

dS441

&(-): (=00, 0) = (0, ﬂH 1) y = E(y) = 2H arctan HR?’)

-

@DedS(xKdxldx! = (dE)? + sin®(Hgz &) dX2,  Hixé € (0,7)
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Relating foliation and RG scale

(d+1)gf]dS/dexIde — F(HR 5)2 dz(Zi — Y(k)—l chZi

dE=0
Global coordinates
of dS

Fo) sinh(x) for AdS,,, i
X) = . 2~ | _ g2 2 2
Sln(x) for dsd+1 dEd Hl% [ dt” + cosh (t) dgd_l]

The (d+1)-dimensional spacetime is foliated by leaves with £ = const,
which we would like to interpret as surfaces of equal RG scale k.

F(Hgé) = Y2, ke R*
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Relating foliation and RG scale

(d+1)gj4}dS/dexI dx’ — F(HR 5)2 chzJ — Y(k)—l dzczi

dé=0
5 Global coordinates
sinh(x)

for AdS,

F(x) = ; o1 | _ o 2 2
Sln(x) for d8d+1 dzd = H% dt + cosh (t) dgd—l

The (d+1)-dimensional spacetime is foliated by leaves with £ = const,
which we would like to interpret as surfaces of equal RG scale k.

F(Hgé) = Y)™'?, ke R*

This gives rise to a regular coordinate transformation.

Ricci flat case.

ltisa
5 “deformed” form of the
LR F _Rk — LH(k)
'H
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Input from the RG
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The AdS; candidate

Pirsa: 22050058

sinh(Hpé) = Y(k)~'?
k— &k) = Hgl arsinh(Y(k)—I/Z)

This is precisely as it must be if the kK — & relationship is to qualify as an
orientation reversing diffeomorphism.

Domain: k() : (0, fmax(y)) - RY, & - k(&) for Ay>0
k(-): RY > RY, E > k(&) for Ag=0
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Global structure and AdS cgnnection

T

A

([

0 8

A g1 1|
\ 0 — “_l, % —E—Iv Y
e [
0 T v
ds?, = — di + dy? + sinX(y) d2 ;
Sarl = 5 | —dv" + dy” + sin“(y) dQ, gt B,
cos*(y)
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The AdS; candidate

Pirsa: 22050058

sinh(Hpé) = Y(k)~!?
k— &k) = HEI arSinh(Y(k)—llz)

This is precisely as it must be if the kK — & relationship is to qualify as an
orientation reversing diffeomorphism.

Domain: k(- ) : (0, §max(y)) S RY, £ k@ for Ag>0
K-): R* > R, £ k@&  for Ag=0
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Global structure and AdS cgnnection

T

o
0 R
A gl 1
0 — 84—19
| 8
o [
)
0 E ¥
2 1 2 2 D 2 T
dsd+1 = T —dr + d![l 4+ sin (l,(l) dgd—f-l 5T
cos“(y)
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Adsd+1 llla lla

T
2| e
&
~
%
g k=0
£
A &0
g
0 E 3 P
v
g~
OJQQGZ‘
o
~
%
m
= 2 B,

{(osamren} - {sano)eet0.6mon | {(dsust) kere)
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AdS/CFT interpretation

k—>o0e=E&(-0 Lightline coundaries AB, , o~ S

k—0 Timelike boundary BB, iso~T

AdS/CFT

A theory of gravity which lives on the bulk of AdS;
and is holographically related to a CFT on the boundary.

The analogy is perfect, provided that

the trajectory {F;c'a, k e IR+} is conformal

and the limit im I';, = I is the action of a 4D CFT.
k—0
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Holography

Within the framework of the gravitational Effective Average Action
there exists a natural and perfectly general notion of holography:

Holographic
Principle

All actions I';, including the bare one, § ~ I';_, ., can be
reconstructed from the ordinary effective action I',_, =TI

The FRG equation defines a meaningful initial value problem also
when the direction of the k-evolution is changed from “downward”

to “upward”, and the initial condition I',_, = I" is imposed in the
IR rather than UV.

Pirsa: 22050058

o r s
1
&
A
»
(4]
$
&
Al/ 8
0 =
@
%,
O%r
N
£
RN
Cb
™
ot
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The dS4 candidate

sin(Hpé) = Y(k)~'7?

k— &(k) = HEI arcsin (Y(k)—IIZ)

Existencefory = Y(0)2>1 << LE>L/ (00 < Ay> A

If this constraint is satisfied, then we have the diffeomorphic map
E-): RT - (0,8,,,), k~ &k

)i (0.£0u0)) = RY & 0 kQ)
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Global structure and dS connection

T T
m m F 3
2T 27T
0+ P
0+ Fad %
R ;
Il
-1
f } } /
0 m r ¥
2 _T
2 1 2 2 2 2 4
ds5, ., = ——— | —dr* + dy“ + sin dQ ‘ ' — 1)
2
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1
2 B1
ot A
L B,
2
; :
2
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dS/CFT correspondence 5

spacelike boundary t — + oo

k— 0 innerpoints BB, r
2

At B, and B, the actions I'} with k = k(£)
andt > £ 00, £ — 0, all seem to “meet”.

Critical phenomenon at the UV fixed point

All Effective Action functionals I', are of equal importance, and

that therefore fluctuations on all scales are equally important.
0+ A

The 3-spheres at t = £ 00 host a 3D CFT
which obtains from the Effective Average Action by evaluating it in
the early/late time regime.

dS/CFT
correspondence

|
ra|

!

T

Stréminger 2001
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Global structure and dS connection

-
%__
01
Lll II
2
1
ds? . = —d? + dy? + sin’(y) dQ3

Pirsa: 22050058

V]

T =
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dS/CFT correspondence 5

spacelike boundary t — + oo

b

k— 0 innerpoints BB, il
2

At B, and B, the actions I'} with k = k(£)
andt —» £ 00, £ — 0, all seem to “meet”.

Critical phenomenon at the UV fixed point

All Effective Action functionals I'; are of equal importance, and

that therefore fluctuations on all scales are equally important.
0+ A

The 3-spheres at t — * 00 host a 3D CFT
which obtains from the Effective Average Action by evaluating it in
the early/late time regime.

dS/CFT
correspondence

ro| =
1

Stréminger 2001
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Conclusions & Outlook

Various forms of (A)dS/CFT correspondences
as specific solutions in nonperturbatively renormalized Quantum Einstein Gravity
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Conclusions & Outlook

Various forms of (A)dS/CFT correspondences
as specific solutions in nonperturbatively renormalized Quantum Einstein Gravity

Technical open questions:
CFT at the fixed point
“Downwards holography”: Reconstruction of the effective action.

Generalizations and future work:
Different truncations and matter models —  Asymptotical (A)dS embeddings

The other way around? Holographic RG to proof Asymptotic Safety?
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PERIMETER
INSTITUTE

Thank you for your attention.

Renata Ferrero & Martin Reuter

Based on arXiv:2103.15709 and work in progress - STAY TUNED!

JG|u

Quantum Gravity Seminar, Perimeter Institute - May, 19th 2022 e CLUTENEERG

UNIVERSITAT MAINZ
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