Title: Deconfined quantum critical points with emergent SO(5) symmetry in fermionic models

Speakers: Hong Yao

Collection: Quantum Criticality: Gauge Fields and Matter

Date: May 20, 2022 - 11:15 AM

URL: https://pirsa.org/22050050

Pirsa: 22050050 Page 1/19

Hong Yao

Institute for Advanced Study, Tsinghua University

Zi-Xiang Li, Shao-Kai Jian, and Hong Yao, arXiv:1904.10975 Zi-Xiang Li, A. Vaezi, C. Mendl, and Hong Yao, Science Advances 4, eaau1463 (2018)

Collaborators:

Zi-Xiang Li (Berkeley → IOP, Beijing)

Shao-Kai Jian (Brandeis University)

Abolhassan Vaezi (Sharif University of Technology)

Christian Mendl (TU Dresden)

Workshop on "Quantum Criticality: Gauge Fields and Matter" Parameter Institute; May 20, 2022

Pirsa: 22050050 Page 2/19

Outline

Introduction

J

• Deconfined quantum critical point with emergent SO(5) symmetry between antiferromagnetism (AFM) and valence bond solid (VBS) in 2D Dirac semimetals.

Zi-Xiang Li, Shao-Kai Jian, and Hong Yao, arXiv:1904.10975

 Emergent supersymmetry at superconducting critical point on the surface of 3D topological insulators.
 Zi-Xiang Li, A. Vaezi, C. Mendl, and Hong Yao, Science Advances 2018

Summary

Pirsa: 22050050 Page 3/19

Quantum phase transitions

 Quantum phase transition (QPT): a phase transition at zero temperature by tuning one parameter in the Hamiltonian.

- A quantum phase transition can be first-order or continuous.
- Note that a first-order transition is not forbidden by any principle. Namely, nothing stops a first-order transition. $F = F_0 + r\phi^2 + u\phi^4 + w\phi^6$, (u < 0 and w > 0: first order transition)
- Quantum critical point (QCP): a continuous QPT.
- Emergent symmetries, such as SO(5) symmetry and supersymmetry, can occur at QCP.

Pirsa: 22050050 Page 4/19

Direct transitions between two broken-symmetry phases (two competing orders): first-order or second order?

- Landau theory states that a continuous transition is forbidden if one broken symmetry is not the subgroup of the other.
- For example, according to the Landau theory, a direct continuous transition between SC and AFM is not allowed.

• Questions: Can Landau-forbidden continuous transition occur?

Pirsa: 22050050 Page 5/19

Proposal of deconfined QCP between AFM and VBS: a non-Landau QCP

• Proposal: Deconfined quantum critical point (DQCP) in quantum magnets.

Senthil, Vishwanath, Balents, Sachdev, Fisher, Science 2004

- AFM and VBS are two competing orders.
- Skyrmion carries VBS quantum number.
- VBS vortex carries spinon quantum number.
- Spinons are deconfined at the QCP.

Levin and Senthil, PRB 2004

Pirsa: 22050050 Page 6/19

Proposal of deconfined QCP between AFM and VBS: a non-Landau QCP

 Proposal: Deconfined quantum critical point (DQCP) in quantum magnets.

Senthil, Vishwanath, Balents, Sachdev, Fisher, Science 2004

- AFM and VBS are two competing orders.
- Skyrmion carries VBS quantum number.
- VBS vortex carries spinon quantum number.
- Spinons are deconfined at the QCP.

Pirsa: 22050050

Conditions of DQCP with emergent SO(5) symmetry: bounds from conformal bootstrap

• Assuming emergent SO(5) symmetry at the DQCP, conformal bootstrap analysis shows that the critical exponents have to satisfy the following bounds: $\eta > 0.52$.

Poland, Rychkov, and Vichi, Review of Modern Physics 2019

- Previous QMC simulations of spin models obtained $\eta \approx 0.2 \sim 0.4$, which violates the conformal bounds.
- This implies those spin models cannot support genuine DQCP with emergent SO(5) symmetry. Instead, the AFM-VBS transition in those models are weakly first-order with long correlation length.
- Note that the results from those models do not rule out DQCP.
- Question: Is it possible to have DQCP with emergent SO(5) symmetry in other 2D models?

Pirsa: 22050050 Page 8/19

Our study: looking for DQCP and SO(5) symmetry in Dirac semimetals on honeycomb lattice

- A unified view from Dirac fermions
 - Dirac fermions ψ_{+K} at valley +K and ψ_{-K} at valley -K
 - AFM + VBS = five mass terms of the Dirac fermions

$$\phi_{\mu} = (N_1, N_2, N_3, \Phi_1, \Phi_2)$$
 five-dimensional "superspin"

= sublattice AFM
$$\vec{N} = \psi_{\pm K}^{\dagger} \sigma^{z} \vec{s} \psi_{\pm K}$$
= intervalley scattering
$$\Phi = \left(\psi_{K}^{\dagger} \sigma^{x} \psi_{-K}, \psi_{-K}^{\dagger} \sigma^{x} \psi_{K}\right)$$

WZW terms from integrating out Dirac fermions

 Integrating out Dirac fermions can lead to topological WZW terms of five-component superspin.

$$\phi_{\mu} = (N_{1}, N_{2}, N_{3}, \Phi_{1}, \Phi_{2}), \, \phi^{2} = 1$$

$$S = \log \int D\bar{\psi}D\psi \exp \left[-\int \bar{\psi} \left(\mathcal{D} + \vec{N} \cdot \vec{s} + \Phi_{1}\gamma_{3} + \Phi_{2}\gamma_{5}\right)\psi\right]$$

$$S = \int d^{3}x \frac{1}{2g} (\partial\phi)^{2} \left[+\frac{2\pi i \epsilon^{abcde}}{Area(S^{4})} \int d\xi d^{3}x \phi_{a} \partial\phi_{b} \partial\phi_{c} \partial\phi_{d} \partial\phi_{e} + \cdots\right]$$

$$WZW \text{ term}$$

- The appearance of topological WZW term is the hallmark of Landau-forbidden transitions and is conjectured to play an essential role in driving a deconfined QCP.
- The bare value of the coupling g: $g \sim 1/m_f$ (m_f is the fermion mass at the transition between AFM and VBS). Small fermon mass means strong coupling g.

Pirsa: 22050050 Page 10/19

QMC of the extended Hubbard model on honeycomb lattice: Direct transition between AFM and VBS

The extended Hubbard model on the honeycomb lattice:

$$H = -t \sum_{\langle ij \rangle \sigma} (c_{i\sigma}^{\dagger} c_{j\sigma} + H.c.) + U \sum_{i} (n_{i\uparrow} - \frac{1}{2})(n_{i\downarrow} - \frac{1}{2}) - \frac{J}{4} \sum_{\langle ij \rangle} \left(\sum_{\sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + H.c. \right)^{2}$$

The ground-state phase diagram is obtained by sign-problem-

free QMC simulations.

Congjun Wu and Shou-Cheng Zhang, PRB 2005 Huffman and Chandrasekharan, PRB 2014 Zi-Xiang Li, Yi-Fan Jiang, and **HY**, PRB 2015

- ➤ We find a direct continuous transition between VBS and AFM.
- ➤ What is the nature of the direct transition: first-order or second-order?
- → Does SO(5) symmetry emerge at the transition?

Zi-Xiang Li, Shao-Kai Jian, and HY, arXiv:1904.10975

Evidences of a second-order transitions between VBS and AFM: a deconfined quantum critical point

• The extended Hubbard model on the honeycomb lattice:

$$H = -t \sum_{\langle ij \rangle \sigma} (c_{i\sigma}^{\dagger} c_{j\sigma} + H.c.) + U \sum_{i} (n_{i\uparrow} - \frac{1}{2})(n_{i\downarrow} - \frac{1}{2}) - \frac{J}{4} \sum_{\langle ij \rangle} \left(\sum_{\sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + H.c. \right)^{2}$$

• QMC evidences of second-order VBS-AFM transition for U=0.5, 1.0, 1.5. It is first-order transition for U=0 and U=0.2.

- Rigorous bounds from conformal field theory calculations assuming SO(5) symmetry: $\eta > 0.52$ and $\frac{1}{3} < 1.957$.
- ◆ Our results are consistent with the conformal bounds: implying that it is possible to have DQCP with emergent SO(5) symmetry at the VBS-AFM transition in our model.
- Very recently, $\eta \approx 0.58$ was obtained for a similar VBS-AFM transition in a square lattice π -flux model. Liao et al, arXiv:2204.04884; Zhu et al, arXiv:2204.12147

Evidences of a second-order transitions between VBS and AFM: a deconfined quantum critical point

The extended Hubbard model on the honeycomb lattice:

$$H = -t \sum_{\langle ij \rangle \sigma} (c_{i\sigma}^{\dagger} c_{j\sigma} + H.c.) + U \sum_{i} (n_{i\uparrow} - \frac{1}{2})(n_{i\downarrow} - \frac{1}{2}) - \frac{J}{4} \sum_{\langle ij \rangle} \left(\sum_{\sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + H.c. \right)^{2}$$

• QMC evidences of second-order VBS-AFM transition for U=0.5, 1.0, 1.5. It is first-order transition for U=0 and U=0.2.

- Rigorous bounds from conformal field theory calculations assuming SO(5) symmetry: $\eta > 0.52$ and $\frac{1}{3} < 1.957$.
- ◆ Our results are consistent with the conformal bounds: implying that it is possible to have DQCP with emergent SO(5) symmetry at the VBS-AFM transition in our model.
- Very recently, $\eta \approx 0.58$ was obtained for a similar VBS-AFM transition in a square lattice π -flux model. Liao et al, arXiv:2204.04884; Zhu et al, arXiv:2204.12147

Direct evidences of emergent SO(5) symmetry

- QMC evidences of emergent SO(5) symmetry at the DQCP
- Five-component order-parameter or superspin:

$$\phi_{\mu}=(N_{1},N_{2},N_{3},\Phi_{1},\Phi_{2}),\,\phi^{2}=1$$

- Emergent SO(5) symmetry requires the following:
 - Rotational symmetry between Φ_1 and Φ_2
 - Rotational symmetry between N_1 and Φ_1

$$F_2^4 = \langle N_1^4 - \Phi_1^4 \rangle = 0 \text{ and } F_4^4 = \langle N_1^4 + \Phi_1^4 - 6N_1^2 \Phi_1^2 \rangle = 0$$

$$(a) \begin{array}{c} 0.3 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.3 \\ 0.3 \\ 0.2 \end{array}$$

$$(b) \begin{array}{c} 0.4 \\ 0.2 \\ 1.7 \\ 0.0 \\ 0.00 \end{array}$$

$$(c) \begin{array}{c} 0.0 \\ 0.0 \\ 0.0 \\ 0.04 \\ 0.08 \end{array}$$

$$(c) \begin{array}{c} 0.0 \\ 0.0 \\ 0.02 \\ 0.04 \\ 0.08 \end{array}$$

$$(c) \begin{array}{c} 0.0 \\ 0.0 \\ 0.02 \\ 0.04 \\ 0.08 \end{array}$$

$$(c) \begin{array}{c} 0.0 \\ 0.0 \\ 0.02 \\ 0.04 \\ 0.08 \end{array}$$

$$(c) \begin{array}{c} 0.0 \\ 0.0 \\ 0.04 \\ 0.08 \end{array}$$

$$(c) \begin{array}{c} 0.0 \\ 0.0 \\ 0.04 \\ 0.08 \end{array}$$

$$(c) \begin{array}{c} 0.0 \\ 0.0 \\ 0.04 \\ 0.08 \end{array}$$

$$(c) \begin{array}{c} 0.0 \\ 0.0 \\ 0.04 \\ 0.08 \end{array}$$

$$(c) \begin{array}{c} 0.0 \\ 0.0 \\ 0.04 \\ 0.08 \end{array}$$

$$(c) \begin{array}{c} 0.0 \\ 0.0 \\ 0.04 \\ 0.08 \end{array}$$

$$(c) \begin{array}{c} 0.0 \\ 0.0 \\ 0.04 \\ 0.08 \end{array}$$

$$(c) \begin{array}{c} 0.0 \\ 0.0 \\ 0.04 \\ 0.08 \end{array}$$

$$(c) \begin{array}{c} 0.0 \\ 0.0 \\ 0.04 \\ 0.08 \end{array}$$

$$(c) \begin{array}{c} 0.0 \\ 0.0 \\ 0.04 \\ 0.08 \end{array}$$

$$(c) \begin{array}{c} 0.0 \\ 0.0 \\ 0.04 \\ 0.08 \end{array}$$

$$(c) \begin{array}{c} 0.0 \\ 0.0 \\ 0.04 \\ 0.08 \end{array}$$

➤ It provides the first convincing example of DQCP with emergent SO(5) symmetry.

Zi-Xiang Li, Shao-Kai Jian, and Hong Yao, arXiv:1904.10975

Genuine DQCP or pseudo-criticality?

• Previous numerical results of η being not consistent with conformal bootstrap bounds inspired the proposal of pseudo-criticality for the VBS-AFM transition.

$$S = \int d^3x \frac{1}{2g} (\partial \phi)^2 + \frac{2\pi i \epsilon^{abcde}}{Area(S^4)} \int d\xi d^3x \phi_a \partial \phi_b \partial \phi_c \partial \phi_d \partial \phi_e$$

 $\epsilon = d - 2$ (d = 3 for the physical systems)

Scenario #1: always first-order for all the possible bare value of g. Pseudo-criticality occurs if $g \ge \tilde{g}$. Ruochen Ma and Chong Wang, PRB 2020 Nahum, PRB 2020

 ϵ 1
1st-order
Second-order
0

Scenario #2: first-order or second-order depending on the value of g. There is a tricritical point g_{tri} separating the first-and second-order transitions.

• Our model (arXiv:1904.10975) supports the second scenario. Dirac fermions play an important role for setting the bare value of g.

Pirsa: 22050050 Page 15/19

Genuine DQCP or pseudo-criticality?

• Previous numerical results of η being not consistent with conformal bootstrap bounds inspired the proposal of pseudo-criticality for the VBS-AFM transition.

$$S = \int d^3x \frac{1}{2g} (\partial \phi)^2 + \frac{2\pi i \epsilon^{abcde}}{Area(S^4)} \int d\xi d^3x \phi_a \partial \phi_b \partial \phi_c \partial \phi_d \partial \phi_e$$

 $\epsilon = d - 2$ (d = 3 for the physical systems)

Scenario #1: always first-order for all the possible bare value of g. Pseudocriticality occurs if $g \ge \tilde{g}$. Ruochen Ma and Chong Wang, PRB 2020

Nahum, PRB 2020

Scenario #2: first-order or second-order depending on the value of g. There is a tricritical point g_{tri} separating the first-and second-order transitions.

• Our model (arXiv:1904.10975) supports the second scenario. Dirac fermions play an important role for setting the bare value of g.

Pirsa: 22050050 Page 16/19

DQCP in fermionic models

- Our model features massless Dirac fermions, which is different from previous pure spin models.
- The coupling g of the NLSM with WZW terms depends on the mass of Dirac fermions at the VBS-AFM transition.

$$S = \int d^3x \frac{1}{2g} (\partial \phi)^2 + \frac{2\pi i \epsilon^{abcde}}{Area(S^4)} \int d\xi d^3x \phi_a \partial \phi_b \partial \phi_c \partial \phi_d \partial \phi_e$$

 $g \sim 1/m_f$, m_f is the mass of Dirac fermions at the transition.

• Our fermionic model has a multi-critical point **M**, where three phases meet and where $m_f = 0$.

Zi-Xiang Li, Shao-Kai Jian, and Hong Yao, arXiv:1904.10975

Pirsa: 22050050

Outline

- Introduction
- Deconfined quantum critical point with emergent SO(5) symmetry between antiferromagnetism (AFM) and valence bond solid (VBS) in 2D Dirac semimetals.

 Zi-Xiang Li, Shao-Kai Jian, and Hong Yao, arXiv:1904.10975
- Emergent supersymmetry at superconducting critical point on the surface of 3D topological insulators.
 Zi-Xiang Li, A. Vaezi, C. Mendl, and Hong Yao, Science Advances 2018
- Summary

Pirsa: 22050050 Page 18/19

Conclusions

• DQCP with emergent SO(5) symmetry is shown to occur at the AFM-VBS quantum phase transition in Dirac fermion models. It is the first convincing example of DQCP with emergent SO(5) symmetry and with critical exponents consistent with conformal bootstrap bounds.

Zi-Xiang Li, Shao-Kai Jian, and **Hong Yao**, arXiv:1904.10975

 Supersymmetry is shown to emerge at the superconducting transition in a single-Dirac cone model (like the surface of 3D topological insulators).

Zi-Xiang Li, A. Vaezi, C. Mendl, and **Hong Yao**, Science Advances 2018

Pirsa: 22050050 Page 19/19