Title: Fractionalized fermionic quantum criticality

Speakers: Lukas Janssen

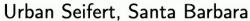
Collection: Quantum Criticality: Gauge Fields and Matter

Date: May 19, 2022 - 4:15 PM


URL: https://pirsa.org/22050047

Abstract: In frustrated magnets, novel phases characterized by fractionalized excitations and emergent gauge fields can occur. A paradigmatic example is given by the Kitaev model of localized spins 1/2 on the honeycomb lattice, which realizes an exactly solvable quantum spin liquid ground state with Majorana fermions as low-energy excitations. I will demonstrate that the Kitaev solution can be generalized to systems with spin and orbital degrees of freedom. The phase diagrams of these Kitaev-Kugel-Khomskii spin-orbital magnets feature a variety of novel phases, including different types of quantum liquids, as well as conventional and unconventional long-range-ordered phases, and interesting phase transitions in between. In particular, I will discuss the example of a continuous quantum phase transition between a Kitaev spin-orbital liquid and a symmetry-broken phase. This transition can be understood as a realization of a fractionalized fermionic quantum critical point.

Pirsa: 22050047 Page 1/20

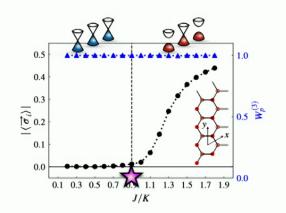

Fractionalized fermionic quantum criticality

Kitaev spin-orbital liquid

Lukas Janssen TU Dresden

Zihong Liu, Würzburg

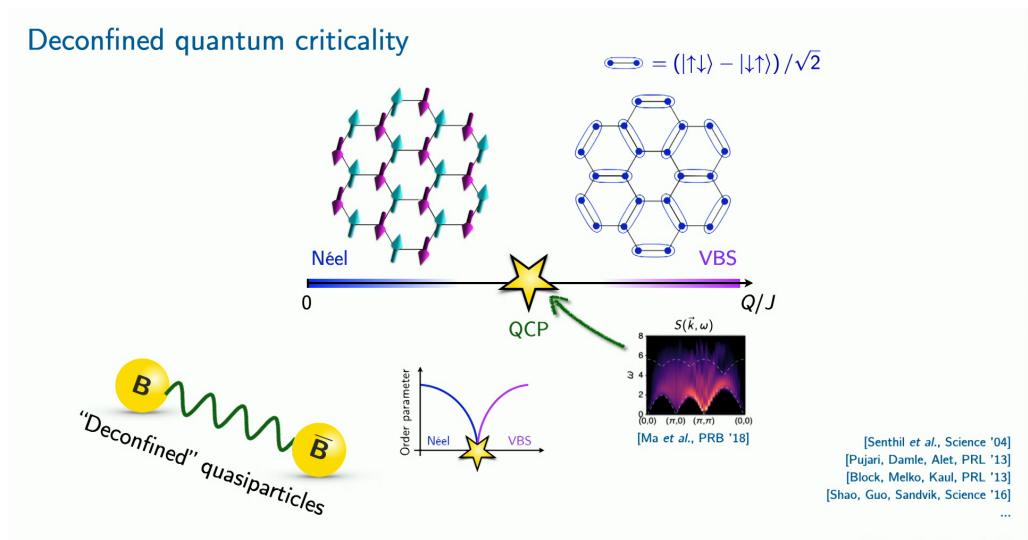
Fakher Assaad, Würzburg Sreejith Chulliparambil, Dresden Xiao-Yu Dong, Ghent Hong-Hao Tu, Dresden Matthias Vojta, Dresden


Pirsa: 22050047 Page 2/20

Outline

(1) Fractionalized quantum criticality

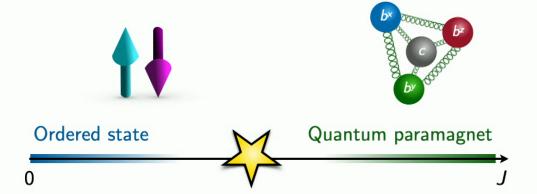
- (2) Kitaev spin-orbital models
- (3) Critical fractionalized fermions
- (4) Conclusions



Slides available on https://tu-dresden.de/physik/qcm/vortraege

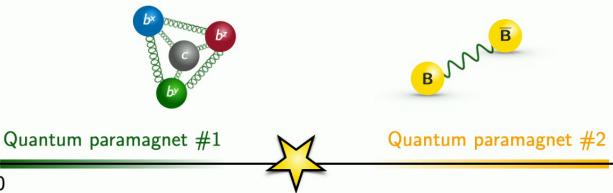
Pirsa: 22050047 Page 3/20

Pirsa: 22050047



→ talk by A. Sandvik

Pirsa: 22050047 Page 5/20

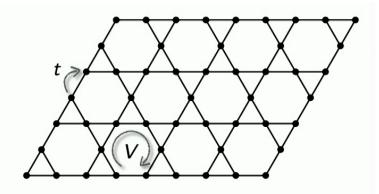

Spin-liquid transitions

0

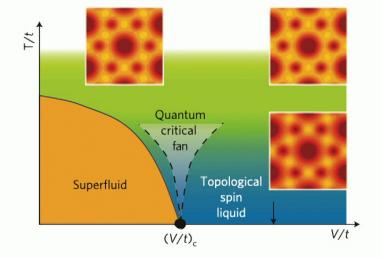
[Assaad & Grover, PRX '16] [LJ, Wang, Scherer, Meng, Xu, PRB '20]

→ talk by Z. Y. Meng

[Metlitski, Mross, Sachdev, Senthil, PRB '15] [LJ & He, PRB '17]

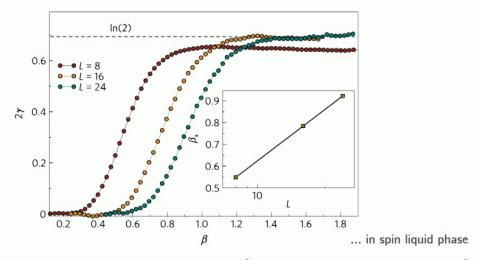

[Boyack, Lin, Zerf, Rayyan, Maciejko, PRB '18]

Pirsa: 22050047 Page 6/20


Example: Kagome-lattice Bose-Hubbard model

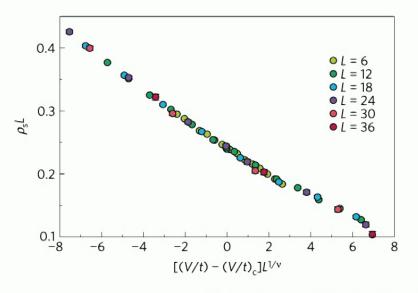
Hamiltonian:

$$\mathcal{H} = -t \sum_{\langle ij
angle} \left[b_i^\dagger b_j + b_i b_j^\dagger
ight] + V \sum_{igcirc} (n_{igcirc})^2$$
... b_i hard-core bosons



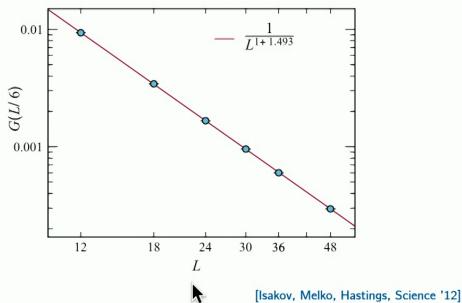
Phase diagram:

Entanglement entropy:


$$S_n(A) = a\ell - \gamma + \dots$$

[Isakov, Hastings, Melko, Nat. Phys. '11]

Quantum critical scaling: XY*

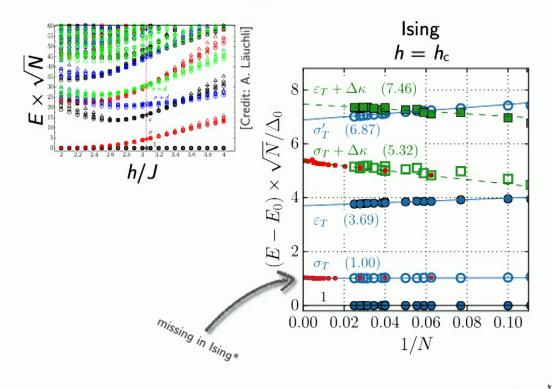

Superfluid density:

[Isakov, Hastings, Melko, Nat. Phys. '11]

$$\nu \approx 0.67 = \nu_{XY}$$

Two-point superfluid correlator:

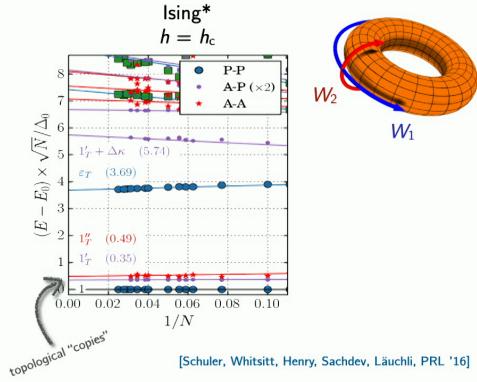
 $\eta \approx 1.49 \neq \eta_{XY} \approx 0.038$


Order parameter composite of fractionalized particles!

... cf. $\eta_T \approx 1.54$ from field theory [Chubukov, Sachdev, Senthil, NPB '94]

Finite-size spectroscopy: Ising vs Ising*

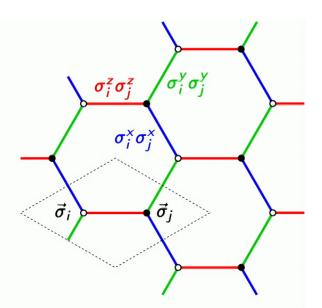
Transverse-field Ising:


$$\mathcal{H} = -J\sum_{\langle ij
angle}\sigma_i^z\sigma_j^z - h\sum_i\sigma_i^x$$

Transverse-field toric code:

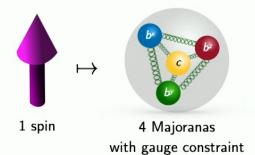
9

$$\mathcal{H} = -J\sum_{s}\prod_{i \in s}\sigma_{i}^{x} - J\sum_{p}\prod_{i \in p}\sigma_{i}^{z} - h\sum_{i}\sigma_{i}^{x}$$

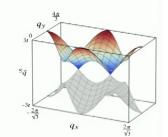


Pirsa: 22050047

Kitaev spin-1/2 model


Hamiltonian:

$$\mathcal{H} = K \sum_{\text{blue links}} \sigma_i^{\mathsf{x}} \sigma_j^{\mathsf{x}} + K \sum_{\text{green links}} \sigma_i^{\mathsf{y}} \sigma_j^{\mathsf{y}} + K \sum_{\text{red links}} \sigma_i^{\mathsf{z}} \sigma_j^{\mathsf{z}}$$


Majorana representation:

$$\sigma^{x} \mapsto \tilde{\sigma}^{x} = ib^{x}c$$
 $\sigma^{y} \mapsto \tilde{\sigma}^{y} = ib^{y}c$
 $\sigma^{z} \mapsto \tilde{\sigma}^{z} = ib^{z}c$

Fractionalization:

$$\mathcal{H}\mapsto ilde{\mathcal{H}}=iK\sum_{\langle ij
angle_{\gamma}}(ib_{i}^{\gamma}b_{j}^{\gamma})c_{i}c_{j} \ \equiv \hat{u}_{ij}=\hat{u}_{ij}^{\dagger}$$

with
$$\left[\hat{u}_{ij}, ilde{\mathcal{H}}
ight] = 0 \quad \Rightarrow \quad \mathsf{static} \; \mathbb{Z}_2 \; \mathsf{gauge} \; \mathsf{field!}$$

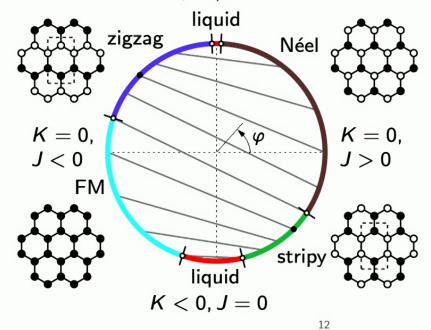
Ground-state flux pattern: u = 1 [Lieb, PRL '94]

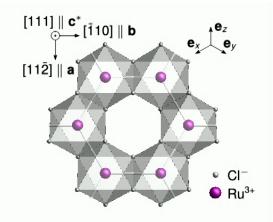
[Kitaev, Ann. Phys. '06]

→ talk by N. Trivedi

11

Pirsa: 22050047 Page 10/20


Kitaev-Heisenberg spin-1/2 model


Hamiltonian:

$$\mathcal{H} = \mathcal{K} \sum_{\langle ij
angle_{oldsymbol{\gamma}}} \sigma_i^{oldsymbol{\gamma}} \sigma_j^{oldsymbol{\gamma}} + J \sum_{\langle ij
angle} ec{\sigma}_i \cdot ec{\sigma}_j$$

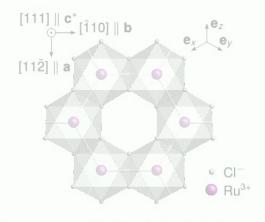
Phase diagram:

$$K > 0, J = 0$$

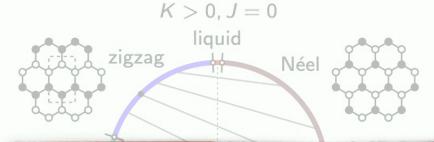
... possible relevance to α -RuCl₃, Na₂IrO₃, Na₂Co₂TeO₆, ...

$$J = A\cos\varphi$$
$$K = 2A\sin\varphi$$

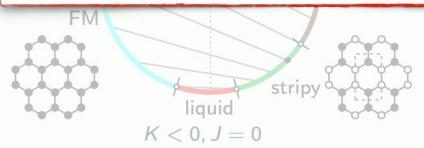
... from 24-site ED: [Chaloupka, Jackeli, Khaliullin, PRL '13]


Kitaev-Heisenberg spin-1/2 model

Hamiltonian:


$$\mathcal{H} = K \sum_{\langle ij \rangle_{\gamma}} \sigma_{i}^{\gamma} \sigma_{j}^{\gamma} + J \sum_{\langle ij \rangle} \vec{\sigma}_{i} \cdot \vec{\sigma}_{j}$$

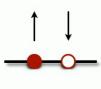
Phase diagram:

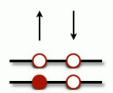

$$\langle ij \rangle$$

... possible relevance to α-RuCl₃, Na₂IrO₃, Na₂Co₂TeO₆, ...

Technical challenge: Dynamical \mathbb{Z}_2 gauge field!

... no sign-problem-free QMC available: [Sato & Assaad, PRB '21]


... from 24-site ED: [Chaloupka, Jackeli, Khaliullin, PRL '13]


Pirsa: 22050047 Page 12/20

Kitaev spin-orbital models

Spin-orbital generalization:

$$\sigma^{\alpha}$$
 2 × 2

$$\sigma^{\alpha}\otimes au^{eta}=\gamma^{i}$$
 4 × 4

... can realize all 16 topological SCs: [Chulliparambil, ..., LJ, Tu, PRB '20]

Hamiltonian:

$$\mathcal{H} = \mathcal{K} \sum_{\langle ij
angle_{oldsymbol{\gamma}}} ec{\sigma}_i \cdot ec{\sigma}_j \otimes au_i^{oldsymbol{\gamma}} au_j^{oldsymbol{\gamma}}$$

Heisenberg spin #

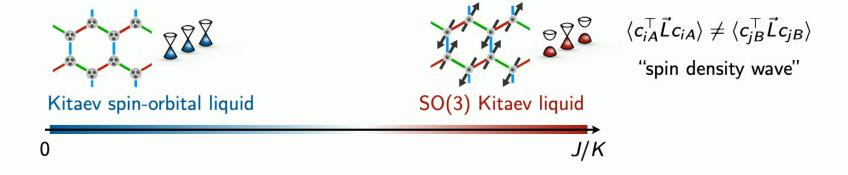
Kitaev orbital

Majorana representation:

$$\sigma^{y} \otimes \tau^{x} = ib^{1}c^{x}$$
 $\sigma^{y} \otimes \tau^{y} = ib^{2}c^{x}$
 $\sigma^{y} \otimes \tau^{z} = ib^{3}c^{x}$
 $\sigma^{x} \otimes 1 = ic^{y}c^{x}$
 $\sigma^{z} \otimes 1 = ic^{z}c^{x}$

Fractionalization:

$$\mathcal{H} \mapsto ilde{\mathcal{H}} = iK \sum_{\langle ij
angle_{m{\gamma}}} \hat{u}_{ij} c_i^{ op} c_j^{m{\gamma}}$$

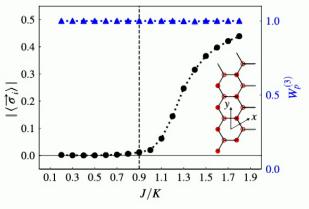

with
$$\left[\hat{u}_{ij}, ilde{\mathcal{H}}
ight] = 0$$
 ... cf. also [Yao & Lee, PRL '11]

Kitaev-Heisenberg spin-orbital model

Hamiltonian:

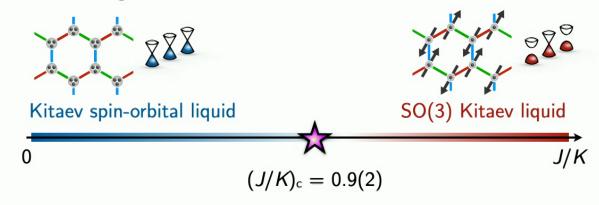
$$\mathcal{H} = K \sum_{\langle ij \rangle_{oldsymbol{\gamma}}} ec{\sigma}_i \cdot ec{\sigma}_j \otimes au_i^{oldsymbol{\gamma}} au_j^{oldsymbol{\gamma}} + J \sum_{\langle ij \rangle} ec{\underline{\sigma}_i \cdot ec{\sigma}_j \otimes \mathbb{1}_i \mathbb{1}_j} \overset{s_{\textit{pin-1}}}{\mapsto} \overset{s_{\textit{pin-1}}}{\downarrow} \overset{m_{\textit{atrice}}}{\mapsto} au_i^{oldsymbol{\gamma}} au_$$

Phase diagram:



Pirsa: 22050047 Page 14/20

14


Gross-Neveu-SO(3)* transition

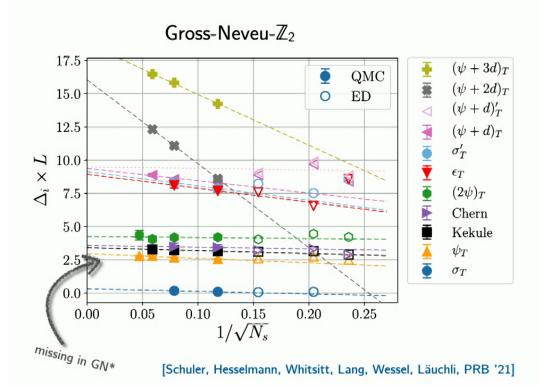
iDMRG:

... on cylinder with $L_y = 4$ unit cells

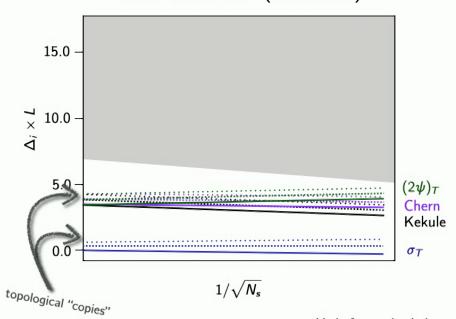
Phase diagram:

[Seifert, Dong, Chulliparambil, Vojta, Tu, LJ, PRL '20]

Pirsa: 22050047


$$\mathcal{S} = \int d^2 ec{x} d au \left[ar{\psi} \gamma^\mu \partial_\mu \psi + g ec{arphi} \cdot ar{\psi} (\mathbb{1}_2 \otimes ec{L}) \psi
ight]$$

"Gross-Neveu-SO(3)"

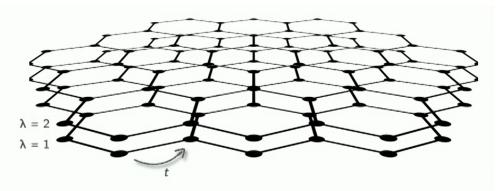

→ talk by M. Scherer

[Ray, Ihrig, Kruti, Gracey, Scherer, LJ, PRB '21]

Gross-Neveu vs Gross-Neveu*

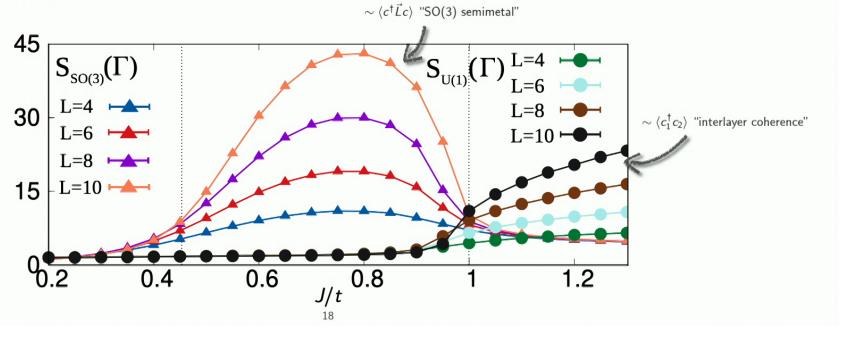
Gross-Neveu- \mathbb{Z}_2^* (schematic)

... testable in future simulations

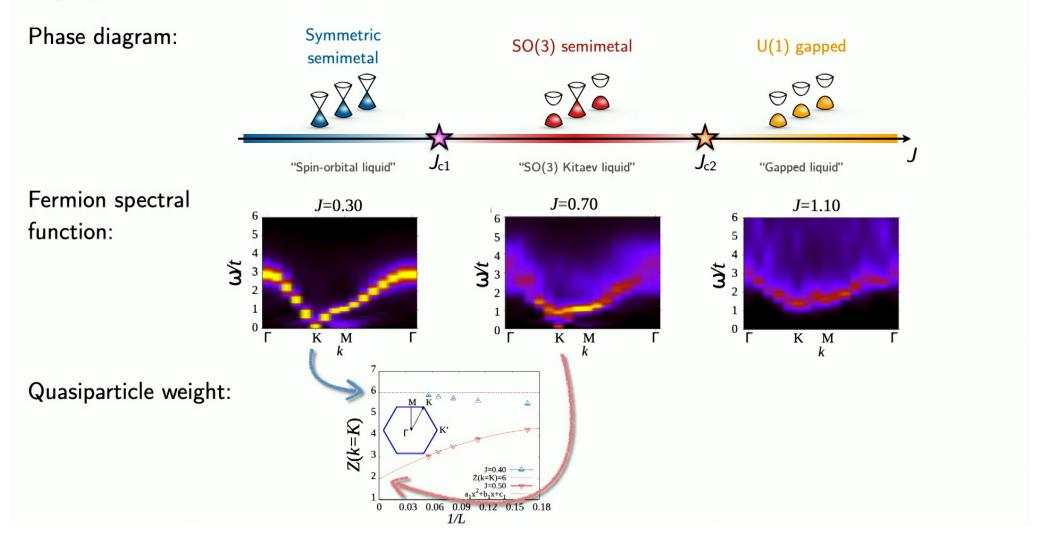

17

Pirsa: 22050047 Page 16/20

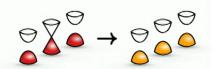
Sign-problem-free bilayer model


Hamiltonian:

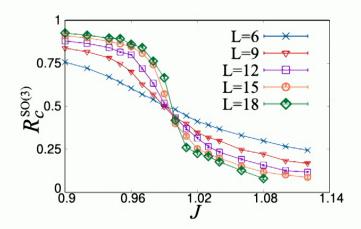
$$\mathcal{H} = -t \sum_{\langle ij
angle} c^{\dagger}_{i\lambda} c_{j\lambda} - J \sum_{i} \left(c^{\dagger}_{i\lambda} ec{\mathcal{L}} au^{z}_{\lambda\lambda'} c_{i\lambda'}
ight)^2$$

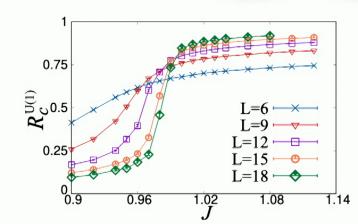

... with $SO(3)\times U_{\lambda}(1)\times U_{c}\times \mathbb{Z}_{2}$ symmetry

QMC structure factors:

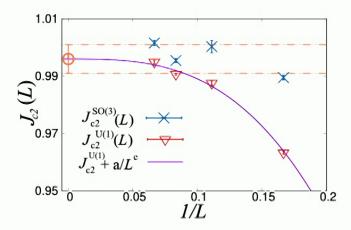

Pirsa: 22050047 Page 17/20

Sign-problem-free bilayer model




Pirsa: 22050047 Page 18/20

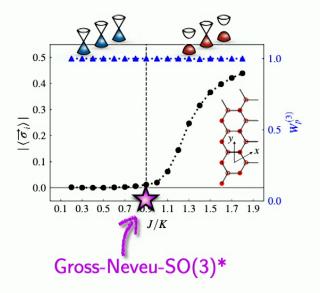
SO(3)-U(1) transition at J_{c2}



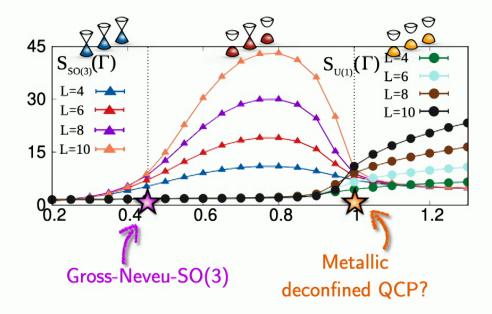
Correlation ratios:

Critical couplings:

$$\Rightarrow$$
 $J_{c2}^{SO(3)} = J_{c2}^{U(1)}$ unique!


Metallic deconfined QCP?

[Liu, Vojta, Assaad, LJ, PRL '22 (Editors' Suggestion)]


Pirsa: 22050047 Page 19/20

Conclusions

Kitaev-Heisenberg spin-orbital model:

Effective bilayer honeycomb model:

[Seifert, Dong, Chulliparambil, Vojta, Tu, LJ, PRL '20]

[Liu, Vojta, Assaad, LJ, PRL '22 (Editors' Suggestion)]

23

Pirsa: 22050047 Page 20/20