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Abstract: Certifying quantum properties with minimal assumptions is a fundamental problem in quantum information science. Self-testing is a
method to infer the underlying physics of a quantum experiment only from the measured statistics. While all bipartite pure entangled states can be
self-tested, little is known about how to self-test quantum states of an arbitrary number of systems. Here, we introduce a framework for
network-assisted self-testing and use it to self-test any pure entangled quantum state of an arbitrary number of systems. The scheme requires the
preparation of a number of singlets that scales linearly with the number of systems, and the implementation of standard projective and Bell
measurements, all feasible with current technology. When all the network constraints are exploited, the obtained self-testing certification is stronger
than what is achievable in any Bell-type scenario. Our work does not only solve an open question in the field but also shows how properly designed
networks offer new opportunities for the certification of quantum phenomena.
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Je pense donc je suis
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Can we trust our senses?

We gain our knowledge through our senses.

Our senses are all the time making
measurements .

But how much can we trust our senses?

What if some evil demon is controlling either
our senses or the external reality?

Cartesian methodological doubt
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Adversarial scenarios

Cartesian methodological doubt ﬁndsI its analogue in modern quantum
information theory.

Two agents, Alice and Bob, involved in some cryptographic protocol have
systematic doubt that evil eavesdropper, Eve, might be intercepting their
communication.

This doubt goes so far that sometimes they do not trust devices they use.

Is it possible to make communication secure even if means of communication
and knowledge are not trusted?

k=01061 1011 k=0101 1011
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Classical physics requires trust

* In classical physics gaining any knowledge requires perfectly characterized
measurements.

 Information can be copied arbitrarily many times, without being disturbed.

* Classical physics cannot pass Cartesian doubt test.
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Quantum physics can work trust-free

No cloning theorem - in quantum physics information exists
as unique, making a copy necessarily destroys the original

No cloning is related to the principle of monogamy of
quantum correlations I

Quantum correlations have a classical footprint: nonlocality
of measurement correlations

Trusting only classical labels, and abandoning any trust in

quantum operations, allows to gain knowledge about NO CLONING!
quantum properties of the underlying system
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Bell theorem

* Local hidden variables bound the strength of
measurement correlations between distant
parties in all generalized probabilistic theories

* Hidden variable A

* The causal structure of the experiment imposes
the following decomposition

pa,b|x,y) = Jdﬁp(l)p(a |x, Dpb|y,A)
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Bell theorem

Probability distributions allowing a local

decomposition form a polytope Bell inequality
I-F<B
In other words such probability distributions satisfy . :
inequalities determined by various hyperplanes

Bell inequality is a functional of probability
e T S X,y
distribution % - p = Z o pla,b|x,y) < p
a,b.x,y
Violation of a Bell inequality implies that the

underlying theory is incompatible with hidden
variable models
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CHSH inequality

Alice’s measurement observables Ay, A,

Bob’s measurement observables B, B,

I
Shared state @

, Correlator (A, ® B)) = Z (=1)**’p(a, b|x,y)
a,b

Born rule (A, ® B)) = Tr[A, ® B/¢]

CHSH inequality
(Ag® By) +{(Ag @ By) + (A, ® By) — (A, ® B)) <2
* @ is maximally entangled

* Alice’s and Bob’s measurement observables are
anticommuting

* (A)® B)) + (A ® B)) + (A, ® By) — (A, ® By) =2\/5
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Necessary ingredients for Bell nonlocality

All separable states lead to locally decomposable probability distributions

The shared state must be entangled

All jointly-measurable states lead to locally decomposable probability distributions

The measurement applied by all the parties involved must be incompatible
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Device-independent paradigm

* Bell violation witnesses entanglement X

and incompatibility j'
* This witness is based only on the

observed probability distribution

pa,b|x,y)
* There is no trust whatsover in any of the

devices used in the experiment

-

* This form of witnessing is known as
device-independent.
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Reverse Born rule

* Born rule provides a way to calculate correlation probabilities if we know the state
and measurements

{0, M,,» My} — p(a,b|x,y) = Tt[M,, ® M,,0]
5

Self-testing aimes to find an inverse relation (when possible)

{P(a, b |xv )’) }a,b,x,y == {Q’ Ma|x= Mb|y}a,b,x,y

Self-testing as a map between the set of measurement correlations and quantum
experiments
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Device-independent certification of quantum states

* Bell inequality violation - device-independent witness of entanglement and
incompatibility

» Maximal Bell inequality violation - device-independent witness of particular
quantum state and measurements?
* Indicates at quantum states (and measurements) certification protocol

x y

plablzy)

Pirsa: 22050025 Page 17/43



Formulation of the problem

* Ideal experiment involving the
specification of the source and
measurements - reference
experiment

° |W)5 {Ma[x}ﬂ {Mb|y}

* Experiment involving untrusted
source and untrusted measurement
devices - physical experiment

o W), (M), (M)

R (

- -

« Aim: find the relation between the physical and reference experiment.
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What self-test (does not) tell?




What self-test (does not) tell?

The situation is,not that simple with trying to exactly identify quantum states giving
rise to certain probability distributions.

There is a whole class of state and measurement transformations which leave the
probability distributions invariant

Local change of basis {Uy ® Ug|y), UM, U , UgM,,,Upg Mo {ly),M My}

alx>

Uncorrelated degrees of freedom to which measurements act trivially
(lp* @ 1), My, @ V', My @ I°} & {|y), My, My, )

These transformations are encompassed by the notion of local isometries

Dy @ Op(|y') & |w)
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Self-testing complex states and measurements

Simultaneous complex conjugation of states and measurements does not change the
correlation probabilities

Let’s say that the reference state |y) is complex, with complex conjugated state | y*)

Since these states can give rise to the same correlation probabilities the best we can
hope from a local isometry is to bring the physical state to the following coherently
controled superposition

* O(|y) = |y) @ |junky) + |y*) @ | junk;)
« (junk,|junk,) + (junk, |junk,) = 1
* (junk,|junk,) =0
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CHSH Bellinequality as a self-test

The maximal violation of the CHSH inequality implies that Alice’s and Bob’s
measurement anticommute

Anticommuting pair of operators defines a qubit subspace

Once the qubit subspace is extracted for both Alice and Bob measurement

correlations allow to conclude that the state they share must be maximally
entangled

The simplest Bell test
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How far can we go?

Partially entangled pairs of qubits [Bamps, Pironio 2015]

All qudit pure bipartite entangled states [Coladangelo, Goh, Scarani 2017]
All qubit graph states [McKague 2010]

All qudit GHZ states [IS, Coladangelo, Augusiak, Acin 2018]

All Dicke states [13, Coladangelo, Auéusiak, Acin 2018]

All pure entangled states?

Pirsa: 22050025 Page 23/43



Can we self-test all states?

All solutions up to now were tailored for a specific state or a group of states sharing
some particular symmetry.

it is very difficult to find a general method for all possible entangled states, since
multipartite entangled states have very complicated structure.

Some ideas towards reaching a general solution for qubit states exist.

Qudit multipartite states, however, remain highly problematic
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Importance of self-testing

* How can we verify that a given machine is a
quantum computer

A. Ask it to solve a problem with clear
separation between time needed for classical
and quantum solution

4 Computation | o

Computation

Ask it to do some sampling problem

4
Perform an interactive proof _E"'““"'B g

11 -« Computation >
> --—4-4E¢rihc alig »
-
-
-

| Computation »

* Self-testing can be a very useful ingredient for
an interactive proof! If we can self-test a state
that is universal for quantum computing we
can clearly prove that computing device is
using quantum resources!

< Computation

Pirsa: 22050025 Page 25/43



Quantum inputs paradigm

Instead of having classical inputs the parties
receive perfectly characterized quantum input
states

Parties apply joint measurements on the part of
the shared state and the received quantum input

p(a, bl yy) = Tr [(M;“’A ® M) (vi'® " ® wf')]

- ' ‘VAB
p(a&b | Wxs llfy) = TI' l'lf'x4 ® l[ffMa,f:l

-

VP = Toy, | (ME4 ® MPP) (W @ 0 @ 1)
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Problem: DI entanglement detection

Violation of a Bell inequality is a DI

entanglement witness
X
Only entangled states can violate j

Bell inequalities

But not all entangled states do
violate Bell inequalities

There are certain weakly entangled

states which lead to local J
probability distributions regardless ¢

of the type of measurement applied '
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Teleportation-assisted DI entanglement detection

Pirsa: 22050025

A: Tomography B: MDI Tomography C: Remote state D: Self-testing
preparation

BSM

BSM

oonoon ...

In a device-dependent way entanglement can be witnessed for every entangled state

Being able to do tomography solves the issue, as any entanglement witness can be
performed

By using teleportation, any witness can be performed with the aid of an additional
maximally entangled state per party

More resources are needed but the procedure can be made device-independent
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Teleportation-assisted DI entanglement detection
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A: Tomography B: MDI Tomography C: Remote state D: Self-testing
preparation

BSM

BSM BSM

....
Ala @M

In a device-dependent way entanglement can be witnessed for every entangled state

Being able to do tomography solves the issue, as any entanglement witness can be
performed

By using teleportation, any witness can be performed with the aid of an additional
maximally entangled state per party

More resources are needed but the procedure can be made device-independent
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Networks certify all entangled states in DI manner

(a) z Y (b) Yz,
a b a b

c) 2 . -
C a
y w
L
b d
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Self-testing additional resources

« A tomographically complete set of measurements can
be self-tested

CHSH inequality can certify two anticommuting
measurements per party

(Ag® By) + (Ay® B,) + (A, ® By) — (A, ® B) = 2/2 = {By, B} =0
(A, ® By) + (A, ® B,) + (A; ® By) — (A; ® B,) = 2/2 = {By, B} =0
(Ay®B))+ (A, ®B) +(As®B)) — (As®B,) =22 =  {B,B,} =0

Measurement observables By, B;, B, are mutually
anticommuting and thus isometric to three Pauli
observables - tomographically complete
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Self-testing with quantum inputs

P = oy [ (M2 © MPP) (¥ ® 0 ® 1P)]

« If ¢ is pure and M2 and MI;JBB’ are rank-one

projectors then Ma’b are rank-one projectors
as well

 Allows to recover the state ¢ (up to local
rotations)
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Teleportation-assitsed self-
testing
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Tomography certifies all states

(a) ? {p(aa ba c | Xy Yy Z) }a,b o, Jy 0 = | ll/’>
1w

s %
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Teleportation-assisted self-testing

detector BSM Trusted
state
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Two scenarios

Network structure is assumed e Network structure is not

: : assumed
Apart from N parties sharing

the state to be self-tested, there  Apart from N parties sharinf the
is one auxiliary party state to be self-tested there are

The physical state is N auxiliary parties

( R, |y/f)BIAf) ® | Py A * The physical state is
J= J | le)Al-*-ANBI-"BN
The reference state is

(5F 0w @1

* The reference state is

( O I<I>+>BfAf) ® |yt
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Proof outlook

No network structure

Measurements performed by auxiliary
parties can be self-tested up to complex
conjugation g

All main parties apply Bell state
measurements (not trusted)

The state shared among main parties is
sent through a teleportation channel to
the auxiliary parties

Since the measurements of the auxiliary
parties are self-tested and
tomographically complete we can do DI
tomography of the teleported state
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Network structure

Measurements performed by the
auxiliary party can be self-tested up
to complex conjugation

All main parties apply Bell state
measurements (not trusted)

The auxiliary party prepares
quantum inputs for the main parties

With self-tested quantum inputs we
can use the result about self-testing
with quantum inputs
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Result: network scenario

X
+

I -w"‘
a;

CORRELATIONS: Flay, - ,azlry, - x5

|ILP)A1'"A;V ® |ju1’lk)A1"°ANB
| lP*)A{---AjV R |junk>A1---ANB

o (2, mm) e -
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Beyond qubits

If the local dimension of the reference state is d > 2 we can always embed the state
into a Hilbert space of local dimension 2™ where m = log, d, which is a state of m
qubits

The whole procedure given for qubits can be mapped to the situation with qudits if
we can self-test a tomographically complete set of measurements on a maximally
entangled state of dimension 2"

To achieve that we use the method of parallel self-testing

Knowing how to self-test some reference state, parallel self-testing allows us to self-
test a tensor product of many copies of the reference state
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Result: multipartite scenario

- 8 (?

(a) T
Tl:,b) * [)

¢ e 57 v, vf’/ YQ

@ D@1 e eo—e

‘ detector BSM Trusted |pt)
state

(D [llP;>A1...AN] - |lIJ>BiBE\F ® |junkO>A1...ANBI...BN + |T*>Bi'B;V ® |junk1>A1...ANBl...BN
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Can we make this method

experimentally feasible?
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Result: multipartite scenario

irsa: 22050025 Page 42/43



Can we make this method

experimentally feasible?
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