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Cosmology and Quantum Gravity

Frequently not on speaking terms at all.
When friendly to each other, often talking at cross purposes

Obviously part of the problem 1s the so-called problem of
time in quantum gravity: if you can’t even find the time
how can you make contact with the real world?

The thesis 1n this talk 1s that the problem of time is closely
related to the problem of the constants of nature.
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The thesis 1n this talk:

Time is the conjugate of the constants of Nature.

The fundamental constants will appear side by side with all
the other constants of motion in a process I will call
“deconstantization”

The problem, then, 1s an embarrassment of riches: too
many times.

I will argue that it is not only OK, but it 1s a feature of the
physical world, with different time zones in action and
adjustment of clocks across them a fact of life.

It 1s possible that phenomenology and testability arises
from this feature of the world.
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The blueprint for this i1dea 1s not that
far-fetched: Unimodular gravity

® The original Einstein dilemma (1919! First unification
theories): Should the theory be invariant under general
diffeomorphisms, or only volume preserving ones?

A. Einstein, Do gravitational fields play an essential part in the structure of the elemen-
tary particles of matter? Sitzungsberichte der Preussiscehen Akad. D. Wissenschaften,
1919, translated and included in The Principle of Relativity, by H. A. Lorentz et al
Dover Press, 1923,

W. G. Unruh, Phys. Rev. D40, 1048 (1989).
= However, this 1s equivalent to full diffeormorphism
invariance with a Lagrange multiplier term added to the

action.

M. Henneaux and C. Teitelboim, Physics Letters B 222,
195 (1989).

Pirsa: 22050024

Page 5/35




The covariant reformulation of
unimodular gravity:

m Add to the standard action a new term

S —+85=5y— [ & zA8, T} = Sp+ / dz (8, AT

1S a vector density

= EOMs are the usual equations (inc. E’s equations) and:

aS _
— =0 = 8.T[ =—

oA 8rG N -
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Implications:

m The constancy of Lambda becomes the result of an
equation of motion: no longer 1s its value set 1n stone...

(Goes back to Hawking’s 3-form: e
. . TS s
one of the earliest solutions to the o a7

CC problem.) mﬁm

= The (zero mode) of the conjugate variable is a great
candidate for a time variable: the 4-Volume elapsed, in this
case.

# The quantum mechanics changes dramatically.
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Why not do this with every other
constant of Nature?

For any set of constants:

So—= S =5y — [dd;r 2 R

EOM: on-shell constancy and a “time-formula”
4.5
oTx
£ =) — i‘Jj,Tg = @
Oy dex

Obviously all equivalent (and equivalent to GR) under a
canonical transformation:

-0 — dua=0

But not quantum mechanically, as we will show.
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Side remark: this 1s not that new.

m Realized by one version of the “sequester’:

. ( 1
N = —_—. ) =
R ST T i

. Raloper, A. Padilla, D. Stefanyszyn, and G. Lahanade,
“Manifestly Local Theory of Vacuum Energy Sequestering,”
Phys. Rev. Lett. 116 (2016), 051302, arXiv:1505.01492.

m [t puts the constants and their conjugate times on the same
footing as other the conserved momenta of scalar fields
used as relational clocks.

® Or as perfect fluids according to some Lagrangian
formulationsj e-g: Bl “Action functionals for relativistic per-

ss. Quant. Grav. 100 (1993), 1579-1606,

; ) 4+ JH [-."'.'fﬂ i+ Badua - ]']
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The quantum mechanics 1s totally
different. ..

Not that surprising. Quantum mechanics sniffs the off-shell
regions of phase space.

Even abstracting from path integral formulation it 1s
obvious that constants and their times will become
canonical conjugates.

Can expect a time to appear n the usually timeless WdW
equation.

Can expect superpositions with different values of the
constants to be possible.

Can expect a better grasp of normalizability and imner
product (usual solutions will be like monochromatic plane
waves).
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BEFORE DECONSTANTIZATION:

m Action in MSS starts as:

So = 6KV, f dt (..-,_.'2&— Na l—{jbi’ + kc?)

k= 1/(16xGy), k = 0,%£1

® The metric and connection appear as conjugates. On-shell

we have: .
b=a

(b 1s like the inverse comoving Hubble volume, in
cosmology speak)
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BEFORE DECONSTANTIZATION:
(./cont)

® The example of Lambda. The WdW equation for GR (in
the connection representation):
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AFTER DECONSTANTIZATION:

® Your WdW equation becomes a Schrodinger equation:

—Ihh {h’% —{h?} {EJT_IJ =0

® You gain a time factor in your monochromatic solutions
(with the spatial factor satistying the original WdW eqn)

3V i ._ A s
i) = s (b; ) exp [—iiﬁ:ﬁ]};] "t,-”{_!'], T"DJ = ..Nr exp [!ITQ{T:ﬁ = ,\ ,15“.3} ):|

e P

® You get to superpose plane waves, obtaining normalizable
physical states:

P(b) = [ ,?TA,{rpjexp [Eu(lﬁ[bj Tnl]
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AFTER DECONSTANTIZATION
(./cont):

® You acquire a natural conserved inner product:

(V1[ha) = / do Al () Az(0)

® Which for (and only for) pure Lambda states translates to:

(Y1]h2) = [ dX b7 (b, Tg)2(b, Ty)

= (Note that this 1s not invariant under canonical

transformations: the choice of wave number 3/Lambda can
be important.)
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Lee was almost there before (1n his
2009 paper on unimodular gravity)

If we define that constant value A(x) = A we find that the wavefunction evolves as
V(A1) = f dAW(A, A)e™ (70)

This is now an ordinary integral over A. )

It is amusing to note that the Kodama state[12] W;(A, A) = e /Ye5(4) js still a solution
to (65), with the state considered a function of variables A and A. With the standard point
split regularizations, it solves the ordering

t-l}kf“;] ‘[:'_I:I ('rﬂ-!-l: _.‘ ‘) \I”'l \] =0 I'?l)

Whether this offers any improvement of the interpretational issues facing the Kodama
state is unclear.
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The classical limit 1s obtained (don’t
laugh!)

= [n the appropriate limit, the peak of the probability follows
the classical trajectory:
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Less trivially, it also extends to
multifluid situations:

Multi-time setting:
2 31

H {b, a’; o — i- “ 1} =0 (b, T) = '\./ dae Al ex) exp [—é I':E -'_xT} s (b; ax),
3V, o1 :

Away from single fluid 1t becomes obvious that MSS is a
dispersive medium:

) : n ave . y
,(b, ) = Npexp |:.'-' TP (b o J]

. a-T—Pbha)=0

The wave packets have a peak that follows the classical
trajectory still

o R p oy . !,1” . . ¥ AT L
I’[_E‘.l,(l:'.] = P”?. ) + E {j.‘_’[é nul:f_l.,_' = f_'-‘.,_[_|_:| + ... s _-\"}_’EIT{:_U (byoxn ) —eoen-T') H II.':-‘!-{-h_'Tr- ]

. AV ¢ ¥ d i
S (ei—an)(Ti— 25)
i

wi(b, T}) = [ dos A(es)e  F
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m An effective X can be defined. In the Gaussian
approximation the classical trajectories would still be

followed:

® Indeed the CS functional and its generalizations are the
linearizing variables (cf. DSR-like theories, with MDRs) of

the dispersive medium in mono-fluid situations: the
packets do not feel dispersion in terms of X, not b.
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AFTER DECONSTANTIZATION:

® Your WdW equation becomes a Schrodinger equation:

.8 o 4
—ihh_ (B)— — ih—| (b, T} =0
{ ihha(b) 5 "-’s:JTJ b T.) =0

® You gain a time factor in your monochromatic solutions
(with the spatial factor satisfying the original WdW eqn)

i3

o | 3V, —
i = s (b; ) exp {—i%:ﬁfﬁ] tr.(b Tgp) = -Nr exp |:'! IT Q{ T‘b — X b {.b} ):|

P

® You get to superpose plane waves, obtaining normalizable
physical states:

k> Ao 3o § no e :
¥(b) = / ~=_ A() exp [ifﬁ(ﬁ s(b) — TM]
J V2wh h
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But what about departures from the
classical limait?

m They certainly happen near the Big Bang: I will show how
this can solve minimally the singularity problem. (S.Gielen
+JM, 2204.01771 )

® They can happen “here and now’: (S.Gielen + JM.
2201.03596)
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A generalization for radiation of the
Chern-S1mons wave function and its
unimodular extension.

= The Hamiltonian is particularly simple:

— (b* + k)a® + m =0.

m And so solutions of the form:

b gt
“ E‘\p —(}( X - T] ap=m, Xz= / £ db :
J (2 +k)

Ti'll"' l:q' T) \/-;’—

(1.e. a new CS functional, adapted to radiation)
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The probability distribution at “late”™
times:

m The dispersive nature of the medium actually sharpens the
wave function so that they become quasi-coherent in b
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Less trivially, 1t also extends to
multifluid situations:

5 T 3V, :
Db TY=N / dov Al ex) exp [—'é!.—_!'"-'_tT} s (b ),
; ‘p

Away from single fluid it becomes obvious that MSS is a
dispersive medium:

e il an
b, o) = Npexp [Tf e -'] a-T - P{b,a) =0

The wave packets have a peak that follows the classical
trajectory still

aF

Eibues =R ”“H_T £~ Pex | b — k) - \.JW‘T””& i TrH-!;f-‘g'.'_-h.'Te‘J

- 3V, ¥ > 4
- (o —ovin ) (Ti— 25
f

'l_;"‘i' l,b. T,‘ :l = f (j!"l'g.-‘t[;ﬂ'i ] !':5_1_1,;!:_.' ;
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The probability distribution at *“late”™
times:

01 02 03

— T=—5C»'T T=—-1UUT — T=—~2UJT

FIG. 1. As |T| > o7 the distribution P(b) quickly becomes near-
Gaussian in b, with o(b)/b < 1. We can identify T = —y since
a(T)/|T| <« 1, so that in the expanding branch (T" < 0, > 0) the
ever-sharper peak follows the classical trajectory b = 1/7.
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The probability distribution at the “end
of the world”...

—_ T=- ar T=-05 dr

- T==01ay — T=0

FIG. 2. For |T'| < o the distribution P(b) is very distorted, and its
peak does not go to infinity but saturates at b = bp. As T — 0 this
peak lowers, and a secondary peak in the contracting zone becomes
more prominent. At T' = 0 the two peaks have the same height, but
nothing is singular. ForT" > 0 a symmetric film is played, eventually
linking up to a semi-classical contracting phase (not displayed). We
thus have a quantum bounce.

Pirsa: 22050024 Page 27/35




irsa: 22050024

So we have a quantum solution to the
singularity problem.

m [t boils down to time being “quantum” and so its
uncertainty non-negligible when

m Unitarity in quantum the wave function has to go
somewhere. (A quantum transition between a contracting
and expanding Universe is inevitable.)

® The fact it never goes to infinite curvatures 1s due in part to
the measure .
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Near the would be singularity it all
changes:

Instead of going away to infinity, the peak gets stuck at a
maximal curvature:

A symmetric contracting peak emerges at
At T=0 we can actually compute:

For T>0 the situation reverses linking up to a classical
contracting Universe.
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The current Universe 1s special i two
ways:

¢ The Universe is currently filled with ingredients with
different equations of state but comparable densities:

+ We may be in the process of handing over from one
type of clock (a G or a dust clock) to another (a
Lambda clock).

+ We moved from the w>-1/3 regime to w<-1/3.

+ We have just come out of a bounce in connection
space! (Not 1n metric space.)
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[1lustration with radiation and Lambda

a3 = % ( V(b) £ vV (b)? — 4m m]

Great: but what happens during the
Crossover?
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As with any reflection there 1s an
evanescent wave

Imfyb)]
15

l li HIHIHIHIH
”l ‘ Vn. I"

FIG. 6. Imaginary part of the full wave function s normalized so as
to match the asymptotic radiation dominated expression, with param-
eters h = 1, m = 1, ¢ = 10°. The incident {orange) and reflected
(blue) waves, when superposed, match the evanescent wave (green)
up to second derivatives in this plot.
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As with any reflection, the incident and
reflected wave interfere, leading to
ringing within the packet

T=8 — T=4 — T=0

FIG. 8. A plot of |1|* for the same situation as in Fig.7 at T =
12,8, 4, 0. (For the particular case of T, — but not for a generic time
— this function is symmetric, so for clarity we have refrained from
plotting the equivalent T, < 0.)
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The semi-classical probability
distribution around the b-bounce

0.05 0.06 0.09

— T=0 T=8 — T=10 — T=12 — T=16

FIG. 9. The probability with the semiclassical measure, for the same
situation as in Fig.7, at the various times T;,, = 16, 12,10, 8,0. We
have verified explicitly that this probability density, unlike the func-
tion plotted in Fig.8, always integrates to unity.
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Watch this space... (work in progress)

m The realistic case of a matter to Lambda transition 1s
currently being worked out

= Niayesh and I have solved the cosmological constant
problem last week...
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