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Abstract: This course is designed to introduce modern machine learning techniques for studying classical and quantum many-body problems
encountered in condensed matter, quantum information, and related fields of physics. Lectures will focus on introducing machine learning
algorithms and discussing how they can be applied to solve problem in statistical physics. Tutorials and homework assignments will concentrate on
developing programming skills to study the problems presented in lecture.
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ML and quantum science research

» Condensed matter, qguantum information, statistical
physics, and atomic, molecular, and optical physics
communities are exploring research at the intersection of
ML and quantum physics.

> |nterest is shaped in part by the commonalities in the
structure of the problems that these disciplines address.
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Commonalities
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Dimensionality of quantum systems vs neural machine translation

L oN
|¥) vector with 2 » Language models live in very high

dimensional spaces too (example from

» Today's best Attention is all you need”, 2017)

supercomputers can solve

Schroedinger’s equation

exactly for systems with a Vocab. SjzeMax length of sentence
maximum of ~45 spins.

R 3l () 8000190 ~ 2.03 x 1039

» We want N as large as

_ Very large state space
possible
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Most paragraphs are noise — Probability distributions over the sentences
our brain understands live in low-dimensional subspace. Similarly,
physical states realized in nature live in a lower dimensional subspace.
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Most importantly is the common
structure these problems share
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Correlations and symmetries with strikingly similar structure

Ising Model

Natural Images
T

1.6

1.6

» Critical correlations:

C/N C/N

> Natural language and natural images

> Music
. . . Statistical Thermodynamics of Natural Images
> All exhibit power-law decaying correlations  Pre110,018701 2013)

: . : v ZER
identical to a (classical or quantum) at a A |
critical point

> Translational, rotational, reflection, and
other symmetries— enrich out
understanding and improve sample
complexity in ML.

Scale-free correlations in starling flocks.
PNAS 107 (26) 11865-11870
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WHAT ARE
AUTOREGRESSIVE
MODELS?
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PROBABILISTIC AUTOREGRESSIVE MODELS

> The term autoregressive originates from time-series models: observations from the
previous time-steps are used to predict the value at the current time step.

» Consider a probability distribution P(e) = P(s,, 05, ... ,0y),

P(01,02,...,0N) = P(01)P(02|01)P(03|01,02) ... P(on|o1,02,...,0N-1)
]

» To specify P in a tabular form requires exponential resources

» To alleviate this exponential issue: parametrize the conditionals

P(oi|lo<i) = Po(03]0<;)
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PROBABILISTIC AUTOREGRESSIVE MODELS AND WAVE FUNCTIONS

v/ Can be exactly sampled easily

v/ Computing the probability of a configuration P(s) = P(c,,0,,...,0y) iS €asy
v/ Can be defined in any spatial dimension

v/ Easy to encode mean-field theories (e.g. Gutzwiller mean-field theory)
v/ We can impose symmetry and other useful physical properties

 These properties remain true for autoregressive models of the
prop g
quantum state
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A CANONICAL EXAMPLE:
THE RECURRENT NEURAL
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RECURRENT NEURAL NETWORKS (RNN)

> The key building block of an RNN is arecurrent cell

h, = f (W[h"n—lm an—l] =+ b)
t

Yn =S (Uhy, +c¢) S = Softmax
P(Jn|an—1:---101) =Yn " On

Sampling:
e Sample each conditional

* Input the sample to the next step

P(O’l,O'g,...,O'N) = .P(O']_)P(O'2|O'1)P(O'3|G'1,0'2)...P(O’N|O'1,0'2,. ..,O'N_]_)

RNNSs are universal function approximators. Schifer and Zimmermann (2006)
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BUT THERE ARE MORE AND LIST IS LONG

> Transformers

» Neural autoregressive density estimators
> Autoregressive flows

> PixelRNN

> PixelCNN

» Wavenet
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Examples

Examples
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Data-driven learning of
quantum states/
approximate quantum
state tomography of
large systems
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Quantum state tomography

Quantum state tomography is the process of reconstructing the quantum
state by measurements on the system. It “is the gold standard for verification
and benchmarking of quantum devices”*

Useful for:
« Characterizing optical signals

- Diagnosing and detecting errors in state preparation, e.g. states produced
by quantum computers reliably.

- Entanglement verification

* Efficient quantum state tomography. Marcus Cramer, Martin B. Plenio, Steven T. Flammia, Rolando Somma, David
Gross, Stephen D. Bartlett, Olivier Landon-Cardinal, David Poulin & Yi-Kai Liu. Nature Communications volume 1,
Article number: 149
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Traditionally QST requires exponential resources

Examples

« Maximum likelihood estimation. Requires an explicit “physical” density
matrix === representation scales poorly

Maximize probability of observed data

L(p) =]]P@"

with respect to a parametrization of A2

. |ssues: Exponential scaling in the parametrization

« Estimation of errors due to finite statistics in the measurements is difficult

On the Measurement of Qubits. Daniel F. V. James, Paul G. Kwiat, William J. Munro, Andrew G. White. Physical
Review A 64, 052312 (2001)
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Need to go beyond standard Quantum state tomography

* Progress in controlling large
quantum systems.

» Availability of arbitrary
measurements performed with
great accuracy.

* The bottleneck limiting progress in
the estimation of states: curse of
dimensionality of traditional
techniques.
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Synthetic Quantum devices are growing fast

e —
SClence Current Issue First release papers Archive About v Submit manuscript
e

HOME » SCIENCE > VOL.374,NO. 6572 > PROBING TOPOLOGICAL SPIN LIQUIDS ON A PROGRAMMABLE QUANTUM SIMULATOR

Article | Published: 07 July 2021

Quantum phases of matter ona256-atom
programmable quantum simulator

RESEARCH ARTICLE TOPOLOGICAL MATTER 'F in @' ﬁ =

Probing topological spin liquids on a programmable
quantum simulator

Sepehr Ebadi, Tout T. Wang, Harry Levine, Alexander Keesling, Giulia Semeghini, Ahmed Omran, Dolev

Bluvstein, Rhine Samajdar, Hannes Pichler, Wen Wei Ho, Soonwon Choi, Subir Sachdev, Markus Greiner,

Vladan Vuletié & Mikhail D. Lukin & ; SEMEGHINI (@), H.LEVINE (). A KEESLING (), S EBAL WANG (). D BLUVSTEN VERRESEN (D). H. PICHLER (5. M. KALINOWSKI [_] M

+7 authors Authors Info & Affiliations

Nature 595, 227-232 (2021) | Cite this article

nature.com > nature > letters > article

PHYSICAL REVIEW X

~ nature

International journal of science

ighlights Recent Sul 5 Accepted Collections  Authors Referees Search Press  About Staff

Letter Published: 22 A t2018 . 4
S h SR S Quantum Chemistry Calculations on a Trapped-lon Quantum

Simulator

Cornelius Hempel, Christine Maier, Jonathan Romero, Jarrod McClean, Thomas Monz, Heng Shen, Petar

Observation of topological phenomena in
a programmab]e lattice Of 11800 qubits ;::;c:xng;r;%?gé?_P;:;:::g;nglfggt:;sh Aldn Aspuru-Guzik, Rainer Blatt, and Christian F. Roos I

Andrew D. King B Juan Carrasquilla, [...] Mohammad H. Amin

Mature 560, 456-460 (2018)  Download Citation &
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1. How to collect the datasets

0,0,1,...1,0|
1,1,0,...0,1
0,0,1,...0,1
1,1,0,...0,0

dataset =

0,1,0,...1,0
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Quantum state tomography

* Prepare an unknown quantum
state

» Apply a measurement that probes
enough information about the
quantum state

« Repeat and collect the statistics of C )
the measurement

* Infer a reconstruction of the state
consistent with the measurement « ‘ &
outcomes
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Measurements: Positive operator-valued measure (POVM)

> Born Rule P (a) = Tr pM*® quantum theory (&> experiment
> Measurement operators M = {M¥ | ¢ € {1, ...,m}}

INFORMATIONALLY COMPLETE MEASUREMENTS
®
- The measurement statistics P(a) contains all { i
of the information about the state. @—* p *—@
* Relation between p and distribution ©/ ]
P(a) can be inverted D

* M form a basis for operators
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INVERTING BORN RULE
BORNRULE P (a) = TrpM®

INFORMATIONALLY COMPLETENESS —>THIS RELATION CAN BE INVERTED

P = Z a, a,’ )M(a)

a,a’

T, w = TIM@M®)]
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Insight: parametrize statistics of measurements and invert
=> Create an autoregressive model

P(a) =TrpM? of P(a)

Autoregressive models (RNNs and

transformer)
1. Allow for exact sampling
Pmodel (a)
2. Tractable density Pmodel (a)
3. Use MLE to learn it.
(a) 2
Pmodel = Z Pmodel (@) M
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Learning Ground states of local hamiltonians from data

a 1.00 T Z 2 T
ol ooy L S T H=J30i0;+h} 0
- \ 0.75 4
-0.704 [ ! 0.50 4 H 1
N _ 1 N=50 spins. P(a) is a deep
H- - 202542,
£ 075+ e 199820000000 (3 layer GRU) recurrent
0.00 4|/ /1A VVVARARAAARS
~0:80 - | Ldabedastotece neural network language
—0.254 ,*
. gm0 model.
e : ; =) P I —
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Carrasquilla, Torlai, Melko, Aolita. Nature Machine Intelligence 1, 200 (2019)
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EXPERIMENTAL DEMONSTRATION

Lehy
Ly
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EXPERIMENTAL DEMONSTRATION

()

FIG. 5. Benchmarking AQT (a) to MLE tomography offered
by IBM's Qiskit library (b) for a noisy 3-qubit QHZ state
data generated on the IBMQ_OURENSE quantum computer.
Each bar represents the absolute value of a density matrix
(DM) element.

GHZ state with 3 qubits

Multi-head
Attention

Positional @_Qa
Encoding X
' Input embedding '

ai, a2, -+ aN

Peter Cha, Paul Ginsparg, Felix Wu, Juan Carrasquilla, Peter L. McMahon, Eun-Ah Kim.

arXiv:2006.12469 (2020)

PSI 2015-2016
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Neural networks as wavefunctions

* Recall that we represent a quantum state as a 2N_dimensional vector of complex
entries

ly) =

| Vfo) —

Y0,0,0,..
¥1,0,0...
¥1.1.0,..

Yiaa,...

v

[14/,(0,0,0, ...
l'!'/‘q(l ,0,0, p_—
e 05

.0,0
.0,0
.0,0

1,1

w(1,1,1,...1,1)

gg; Where the complex-valued
00| boolean function

What does it mean that we represent a quantum state as a neural
network?

Wy(x1, %), ..., Xy) = Neural network(x;, x,, ..., Xy)

As a consequence, we go from an exponential amount of parameters to a neural network with a
few parameters at the cost of constraining the type of functions we can represent.
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Neural network quantum states

Input layer Hidden layer a

Computer Physics
Communications Output layer

ELSEVIER Computer Physics Communications 104 (1997) 1-14

Artificial neural network methods in quantum mechanics

LE. Lagaris ', A. Likas, D.I. Fotiadis

Deparimens of Computer Science, University of loannina, PO. Box 1186, GR 45110 loanning, Greece
Received 17 March 1997, revised 22 April 1997

Fully b

connected
layer

—Q Y (o)

Input layer Convolutional layer

3.5. Two-dimensional Schridinger equation

We consider here the well-studied [2] example of the Henon-Heiles potential.
The Hamiltonian is writlen as

2

L))
1t @
H=~3 ( +"_)+V(L."}- 16 2x2 maps . .

per sublattice

ax? gyl

with ¥(x,y) = %(12 + )'3J + 4#(1_\;3 - :."x‘}.

Hidden
LE. Layaris et al. /Computer Physi
layer
v
8
0
3 -
§ Visible
layer

Fig. 4

Fig. 4. Ground state of the Henon-Heiles problem (« = 0.99866)
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Neural network quantum states

nawre

physics

LETTERS

PUBLISHED ONLINE: 13 FEBRUARY 2017 | DOI: 10.1038/NPHYS4035

Machine learning phases of matter

Juan Carrasquilla™ and Roger G. Melko"?

KITAEV'S TORIC CODE GROUND STATE

|
I LS | LI
p iEp v €W T ]
+'\f
T ol
|‘I!Tc)oc61i_)1rr01c> Z e’ Ly llicp ol T 0N )

O15..,ON

J. Carrasquilla and R. G. Melko. Nature Physics 13, 431-434 (2017)
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Input layer Hidden layer a

Output layer

Input layer Canvolutional layer Fully b
a=c =5 connected
layer

—+—Q ¥Y(o)

I Q
16 2x2 maps . .

per sublattice

Hidden
layer

Visible
layer

Page 32/45



Neural network quantum states

RESEARCH

RESEARCH ARTICLE RIETeH [Eimfaver

Solving the quantum many-body
problem with artificial
neural networks

Giuseppe Carleo'* and Matthias Troyer"?

Output layer

The challenge posed by the many-body problem in quantum physics originates from the Input layer Convolutional layer Fully b
difficulty of describing the nontrivial correlations encoded in the expenential complexity connected
of the many-body wave function. Here we demonstrate that systematic machine learning of layer

the wave function can reduce this complexity to a tractable computational form for some
notable cases of physical interest. We introduce a variational representation of quantum
states based on artificial neural networks with a variable number of hidden neurons.

A reinforcement-learning scheme we demonstrate is capable of both finding the ground
state and describing the unitary time evolution of complex interacting quantum systems.
Our approach achieves high accuracy in describing prototypical interacting spins models in
one and two dimensions.

—O ¥(o)

16 2x2 maps . .
Hrp = —h E 041?_ E GfG; Hapy = E Ofﬂj + G:f’oj! b O“fof per sublattice
i i ]

10°* T 10°* T

A B | 107} C Hidden
o A=1 1078 layer
. - . EPS
° he1p2 " e : 10 L
10=Cp = 8E S
10
~ h=2
107 - 2 a0 2 B e S T
[ - a E - a’ R Visible
layer

Giuseppe Carleo, Matthias Troyer, Science 355, 602 (2017)
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Recurrent neural
network wavefunctions

Mohamed Hibat-Allah, Martin Ganabhl, Lauren E.
Hayward, Roger G. Melko, and Juan Carrasquilla

Phys. Rev. Research 2, 023358 (2020)

Recurrent neural
network wavefunctions
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RNNs wave functions

%) = Y w@) o) =) /Pl lo). |¥)=) ¥)"\/P@)|o).

o o o

N
o corresponds to a bit string, eg = (010101011111010010101001) (o) = Z &,
n=1
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Recurrent neural network wavefunctions

(b)
0.16 4 0.14
0.12 4 - 0.13
3 B3
oy Ty
.2 0.08 o2 2
(& 'E{)‘
0.04 4 - 0.11
0.00 = T T T - 0.10
40 50 60 70 80
TFIM 1-D N=80
0.4 m
(a) ® ”o“
10-# 10-2 10-4 .I. .
—— Relative error € — . 0.3 ¢ »
—— Energy variance per spin o? {i=an) L @ ® L
) E— ! H
F 1o o2 | ' \
% : ! N =20: N = 80: \
é — DMRG === DMRG Iy
iozsid oy L ® RNN ¢ RNN
—4— Sz =0.2 0.1 1 ¢  Symmetric RNN
F 10~ -4 J2=0.0 T T T T T T T
T T r T T 10-8 T T .0 o2 - e 0.3 L0
0 5000 10000 15000 20000 No Sign Marshall Sign £fN
Training step
TFIM 1-D N=1000 J1-J2 model in 1-D TFIM 1-D N=80

Symmetries: Spin inversion, mirror reflection, Sz. Sign: different Marshall signs for the J1-J2 model

Mohamed Hibat-Allah, Martin Ganahl, Lauren E. Hayward, Roger G. Melko, and Juan Carrasquilla Phys. Rev. Research 2,
023358 (2020)
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Neural error mitigation
of near term quantum
simulations

Elizabeth R. Bennewitz, Florian Hopfmueller, Bohdan
Kulchytskyy, Juan Carrasquilla, Pooya Ronagh
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Neural error mitigation

Quantum Neural L
Simulation on Quantum State Variational
Quantum Device Tomography Monte Carlo
Prepare quantum Reconstruct Post-process | W)
state: |WU(0)) with a using the
W) = U(6) = |¥(0)) neural quantum variational
state |¥,) from a principle:
l measurement Ey = min By =
Take projective f dataset D f min (Vx| H [¥5)
measurements: l l
|T(0)) =— >+ Pass the trained |Vj) Return [¥x) gy,

to VMC algorithm

N A

"
Imperfect preparation Neural Error Mitigation
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Neural error mitigation

Quantum ‘ Csotmar)
Simulation on
Quantum Device

Soﬂmax_ Softmax
Linear e Linear
(" >@aaerom) ) (" »(@aazrom) )

Prepare quantum
state:

Multi-head a Multi-head
Attention Attention B
" v — )

Positional @.e? Positional @_q
measurements: Encoding y Encoding
|0(0)) =—— >~ p (_inputembedding | 1) Input embeding

ai,ag,---anym 41,02, AN
- _/

"
Imperfect preparation Neural Error Mitigation
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Neural error mitigation
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Neural error mitigation

a C e
o 71—
2 0.6 -
E 2 10—2 m
e )
(]A T 1[)—1 .
. < ‘
& 107 - /!7"“" b
=
-15 -11 -07 -03 01 -15 -11 -07 -03 01 6 8 10 12 14 16
b Mass d Mass f System Size
" g t 0t @ L # o
z 0118 : g1 29 2 104 & VQE ¢ b=20
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FIG. 3: Performance of neural error mitigation applied to ground states of the lattice Schwinger model | Left: Estimates for (a) the
ground state energy, (b) order parameter, (c) entanglement entropy between the first three and remaining five sites, and (d) infidelity to the
exact ground state, for the N = 8 site model. Each panel contains results for the quantum states prepared using VQE simulated with a
depolarizing noise channel (blue triangles), neural quantum states trained using neural quantum state tomography (green circles), the final neural
error mitigated neural quantum states (red diamonds), and, where applicable, exact results (solid black lines). While the gualitative behaviour of
the entanglement entropy and the order parameter across the phase transition are not modelled well by VQE or NQST, applying NEM
consistently improves the estimates of all observables to low errors and low infidelities. Right: Results of the scaling study of NEM at the phase
transition (m = —0.7) are shown for (e) the energy error per site and (f) infidelity, as a function of system size. The performance of VQE
without noise (blue triangles) shows an approximately constant energy error per site with infidelities that become slightly worse as system size
increases. Across all sizes, app!g)ing NEM (red diamonds) improves VQE performance by two to four orders of magnitude, even when using a
small VMC batch size of b = 2%, which is the number of samples used to estimate the energy’s gradient in one iteration of VMC. In all panels
(left and right), median values over 10 runs are shown with the shaded region encompassing three values on either side of the median.
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REAL-TIME DYNAMICS
OF OPEN QUANTUM
SYSTEMS




NEURAL AUTOREGRESSIVE MODELS FOR MANY-BODY PRYSICS

» Quantum state reconstruction with RNNs (Nature Machine Intelligence, vol. 1, 155-161 (2019)) and
Transformers (arXiv:2006.12469)

» Simulation of quantum circuits with transformers (arXiv:1912.11052)

» Recurrent neural network wavefunctions — accurate ground states, very compact representation in 1d and
2d (Phys. Rev. Research 2, 023358 (2020) )

» Variational neural annealing: produces very accurate solutions to challenging spin glass problems beyond
SA and SQA (arXiv:2101.10154)

» Neural Error Mitigation of Near-Term Quantum Simulations (arXiv:2105.08086) (transformer)
» Simulation of open system dynamics (arXiv:2009.05580) (transformer)

» Transfer learning based on physical principles (arXiv:2003.02647) (RNN)

» Data-Enhanced Variational Monte Carlo for Rydberg Atom Arrays (RNN) (arXiv:2203.04988)

» U(1) symmetric recurrent neural networks for quantum state reconstruction (RNN) ( arXiv:2010.14514 )
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Conclusions

« Now is a privileged time for quantum research — enormous opportunities
arising from artificial intelligence and quantum computing, two of today’s
most promising computational paradigms of the century.

« Body of recent showcases the opportunities that machine learning
techniques, ideas, and research culture can spark in the field of quantum
physics.

« What's a plausible goal for the near term?

« Can ML lead to scientific breakthroughs in quantum physics?
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Can ML produce scientific breakthroughs in quantum physics?

Impact ,

Scientific breakthrough (?)

2>nlving real problems
Series of computational breakthroughs
Demonstrating high potential

Initial explorations, toy models, toy examples «

Time
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