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Abstract: Thermodynamics has shed light on engines, efficiency, and time's arrow since the Industrial Revolution. But the steam engines that
powered the Industrial Revolution were large and classical. Much of today's technology and experiments are small-scale, quantum, far from
equilibrium, and processing information. Nineteenth-century thermodynamics needs re-envisioning for the 21st century. Guidance has come from
the mathematical toolkit of quantum information theory. Applying quantum information theory to thermodynamics sheds light on fundamental
guestions (e.g., how does entanglement spread during quantum thermalization? How can we distinguish quantum heat from guantum work?) and
practicalities (e.g., quantum engines and the thermodynamic value of coherences). | will overview how quantum information theory is being used to
revolutionize thermodynamics in quantum steampunk, named for the steampunk genre of literature, art, and cinema that juxtaposes futuristic
technol ogies with 19th-century settings.

Zoom Link: https://pitp.zoom.us/j/924547666152pwd=QzZXMnYwWN3ZZOTE5RzZEcHp6TkhM dz09
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STEAMPUNK

+ Literary, artistic, and cinematographic genre

+ "Setin the late 19th century, it encompasses all of the
romanticism of the Victorian Era ... then cranks up the
technological level .. . to eleven.”

- Steampunktrain
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STEAMPUNK

+ Literary, artistic, and cinematographic genre

+ "Setin the late 19th century, it encompasses all of the
romanticism of the Victorian Era ... then cranks up the
technological level .. . to eleven.”

- Steampunktrain

+ Steam power + grimy cities + top hats

+ time machines + automata + dirigibles
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THERMODYNAMICS
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THERMODYNAMICS

+ The study of energy
+ Invented during the steampunk era (1800s)
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THERMODYNAMICS

The study of energy

Invented during the steampunk era (1800s)

Technological motivations —
Fundamental physics
Describes large, classical systems

L Steam engine
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THERMODYNAMICS NO
LONGER
SUFFICES.
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THERMODYNAMICS NO
LONGER
SUFFICES.

B4 Quantum

Information-
processing

Out of
equilibrium
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+ New settings
+ Butwork,
Information- efficiency, etc.
processing relevant

Out of
equilibrium
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THERMODYNAMICS NO
LONGER
SUFFICES.

We need a
new toolkit.
+ New settings

e + Butwork

Information- efficiency, etc.
processing relevant

Out of
equilibrium
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THERMODYNAMICS NO
LONGER
SUFFICES.

We need a
new toolkit.

+ New settings

+ Butwork,

@lantum. . ——

Information- efficiency, etc. _
processing relevant PO

ol S

information
Out of theory
equilibrium
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QUANTUM INFORMATION THEORY
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QUANTUM INFORMATION THEORY

The use of quantum phenomena to process information
in ways impossible with classical systems
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QUANTUM INFORMATION THEORY

The use of quantum phenomena to process information
in ways impossiblefwith classical systems

+ Entanglement
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QUANTUM INFORMATION

The use of quantum phenomena to process information
in ways impossiblefwith classical systems

Entanglement
Noncommutation
Discreteness

Disturbance by measurement
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QUANTUM INFORMATION THEORY

+ Mathematical toolkit being applied across science:

+ Condensed matter; atomic, molecular, and optical physics;
chemistry; high-energy physics; computer science;
thermodynamics; ...
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Quantum
Thermodynamics information

+ Re-envisioning the laws of thermodynamics for small, quantum,
far-from-equilibrium, and information-processing systems
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Quantum
Thermodynamics information

+ Re-envisioning the laws of thermodynamics for small, quantum,
far-from-equilibrium, and information-processing systems

+ How can nonclassical resources enhance thermodynamic tasks?

+ Which features of thermodynamics are truly nonclassical?
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Quantum Quantum
Thermodynamics information steampunk

+ Re-envisioning the laws of thermodynamics for small, quantum,
far-from-equilibrium, and information-processing systems

+ How can nonclassical resources enhance thermodynamic tasks?

+ Which features of thermodynamics are truly nonclassical?
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+ Why quantum information theory + thermodynamics?
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+ Why quantum information theory + thermodynamics?

+ Work and information as resources in thermodynamics and computation

+ Quantum many-body engine —» ‘
+ NYH, White, Gopalakrishnan, and Refael, Phys. Rev. B 99, 024203 (2019).

Pirsa: 22050002 Page 22/117



WHY COMBINE
QUANTUM INFORMATION THEORY
WITH THERMODYNAMICS?

Quantum
information

Thermodynamics
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BIG QUESTION IN INFORMATION THEORY:

How efficiently can we process information?

+ "The liver of information theory"

+ Typical answer: function of an entropy
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BIG QUESTION IN INFORMATION THEORY:

How efficiently can we process information?

+ "The liver of information theory"

+ Typical answer: function of an entropy

!

+ Function of a probability distribution or a quantum state
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BIG QUESTION IN INFORMATION THEORY:

How efficiently can we process information?

+ "The liver of information theory"

+ Typical answer: function of an entropy

!

+ Function of a probability distribution or a quantum state
+ (Quantifies the uncertainty in the outcome of a measurement
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QUICK REVIEW: QUBITS

+ Basic units of quantum information

+ Quantum analogues of bits: - -

0 1

+ Quantum 2-level systems
+ Example: spin degree of freedom with s = 1/2
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QUICK REVIEW: QUBIT STATES

Bloch sphere

+p
Density operator (matrix)
Trace-1 positive-semidefinite linear operator

Pure state: 2 = |w){(w]|
L

T— + Vector in Hilbert space
+ Arrow meets the Bloch sphere

Page 28/117
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QUICK REVIEW: QUBIT STATES

P
Density operator (matrix)
Trace-1 positive-semidefinite linear operator

Pure state: 2 = |w){(w]|
L

T— + Vector in Hilbert space
+ Arrow meets the Bloch sphere

Mixed state

+ (an't be expressed as a ket | y)
+ |s the state of an entangled quantum system

+ Arrow inside the Bloch sphere

Bloch sphere
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QUICK REVIEW: QUBIT STATES

P
Density operator (matrix)
Trace-1 positive-semidefinite linear operator

Pure state: 2 = |w){(w]|
L

T— + Vector in Hilbert space
+ Arrow meets the Bloch sphere

Mixed state

+ (an't be expressed as a ket | y)
Is the state of an entangled quantum system

Arrow inside the Bloch sphere
Example: quantum thermal state, exp(—pH)/Z

Bloch sphere

Page 30/117



LET'S CONFRONT AN ENTROPY FACE TO FACE.

Pirsa: 22050002 Page 31/117



ENTROPY AS OPTIMAL EFFICIENCY

L

‘.\/.
. [b)....

Probabilities: Pg> Pps ---

Quantum state: p = ijlj)(jl
J

+ D DL .- D — ncopiesof p —> p®”

Into how few qubits can | squeeze the total message? —» data compression
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ENTROPY AS OPTIMAL EFFICIENCY

‘.\/.
L TATIDAY

Probabilities: Pgs Pps ---

Quantum state: p = ijlj)(jl
J

+ D D oo gl —> ncopiesof p —> p®"

Into how few qubits can | squeeze the total message? —» data compression

Schumacher’s theorem:
Inthe limitas n — oo, the number of qubits required per copy of p equals
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ENTROPY AS OPTIMAL EFFICIENCY

t\/.
—» |a), | D), ...
Probabilities: Pg. Pps ---

Quantum state: p = Zpﬂj)(ﬂ

A
i X \i LLES ‘\‘_/ —_— nCOpiES of ) p®"

Into how few qubits can | squeeze the total message? — data compression

Schumacher’s theorem:
In the limit as n — oo, the number of qubits required per copy of p equals

H \(p) := = Tr(plog, p).

T

von Neumann entropy
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ENTROPY AS OPTIMAL EFFICIENCY

‘.\/.
. b,

Probabilities: Pg> Pps ---
Quantum state: p = ijlj)(ﬂ

J
+ D DL - D — ncopiesof p —> p®”

Into how few qubits can | squeeze the total message? —» data compression

Schumacher’s theorem:
Inthe limitas n — oo, the number of qubits required per copy of p equals

H(p) := = Tr(plog, p) .

T

von Neumann entropy
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WHY IS THIS FUNCTION CALLED “ENTROPY”?
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SHANNON
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SHANNON (1961): “VON NEUMANN TOLD ME...”
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SHANNON (1961): “VON NEUMANN TOLD ME...

"You should call it entropy, for two reasons.
In the first place your uncertainty function has been used

in statistical mechanics under that name,
so italready has a name.
In the second place, and more important,
no one knows what entropy really is,
so in a debate you will always have the advantage."
(Scientific American)
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dE = 1dS + udN % ...
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dE = TdS|+ pdN + ...

|

Spread of probability density across phase space
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ILLUSTRATION:
INFORMATION «— WORK
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SZILARD’S ENGINE:
INFORMATION + HEAT & WORK

+ Classical particle ina box — oversimplified ideal gas

+ Exchanges heat with temperature-T bath

+ Begin with 1 bit of information
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SZILARD’S ENGINE:
INFORMATION + HEAT & WORK
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SZILARD’S ENGINE:
INFORMATION + HEAT & WORK
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SZILARD’S ENGINE:
INFORMATION + HEAT & WORK

+ Anvil gains potential energy

+ Heat converted into work
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HOW MUCH WORK HAS THE PARTICLE PERFORMED
(ON AVERAGE, IDEALLY)?
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HOW MUCH WORK HAS THE PARTICLE PERFORMED
(ON AVERAGE, IDEALLY)?

+ Pressure-volume work: sz-

v

+ |dealgaslaw: pV=nkgT =

7 I
V BATA

!

+ Substitute in: W = kBT[

V2
‘,—’
vi2

=kzTIn2
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REVERSING SZILARD’S ENGINE:
LANDAUER ERASURE

+ Landauer, IBM J. Res. Develop. 5, 183-191(1961).
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REVERSING SZILARD’S ENGINE:
LANDAUER ERASURE

+ Landauer, IBM J. Res. Develop. 5, 183-191(1961).

+ Begin with potential energy
+ Particle location unknown
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REVERSING SZILARD’S ENGINE:
LANDAUER ERASURE

+ Performed work: W > kgT In2
+ Returned the bitto a known state
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BACKGROUND: ENTANGLEMENT
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BACKGROUND: ENTANGLEMENT

+ Manifests in correlations between measurement outcomes
+ Stronger than any correlations achievable with classical systems

+ Example: singlet state of 2 qubits: [y) =(|0)®@ 1) - [1) ® |0))/\/§

A NN\NNNNNNNSN\/

If we measure either system locally,
we have no idea which outcome will obtain.
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BACKGROUND: ENTANGLEMENT

+ Manifests in correlations between measurement outcomes
+ Stronger than any correlations achievable with classical systems

+ Example: singlet state of 2 qubits: [y) =(|0)®@ 1) - [1) ® |0))/\/§

TRV AVAVAVET & W

If we measure both subsystems locally,
we might be able to predict a property
of the joint outcome.
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BACKGROUND: ENTANGLEMENT

+ Manifests in correlations between measurement outcomes
+ Stronger than any correlations achievable with classical systems

+ Example: singlet state of 2 qubits: [y) =(|0)®@ 1) - [1) ® |0))/\/§

TRV AVAVRCHET LW S

If we measure both subsystems locally,
we might be able to predict a property
of the joint outcome.
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BACKGROUND: ENTANGLEMENT

+ Manifests in correlations between measurement outcomes
+ Stronger than any correlations achievable with classical systems

+ Example: singlet state of 2 qubits: [y) =(|0)®@ 1) - [1) ® |0))/\/§

TRV AVAVRVET LT S

If we measure both subsystems locally,
we might be able to predict a property
of the joint outcome.
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BACKGROUND: ENTANGLEMENT

+ Manifests in correlations between measurement outcomes
+ Stronger than any correlations achievable with classical systems

+ Example: singlet state of 2 qubits: [y) =(|0)®@ 1) - [1) ® |0))/\/§

ANNNNNNNNANSEE

There exists a certain whole-system measurement
whose outcome we can predict exactly.
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ENTANGLEMENT & ERASURE IN THERMODYNAMICS

+ Del Rio etal., Nature 474, 61 (2011).
+ Goal: resetto | 0) a qubit entangled with a memory in a heat bath's presence

+ While erasing the system and keeping the memory’s state fixed, you can extract work.

l

4 yfl/l/’

SYSTEM /D{/ b
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ENTANGLEMENT & ERASURE IN THERMODYNAMICS

Del Rio et al., Nature 474, 61 (2011).

Goal: resetto | 0) a qubit entangled with a memory in a heat bath's presence

While erasing the system and keeping the memory's state fixed, you can extract work.
Trick: “Burn” the correlations between system and memory.

+ Bell measurement

T :(\__J/i

SYSTEM /M/ b
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ENTANGLEMENT & ERASURE IN THERMODYNAMICS

Del Rio et al., Nature 474, 61 (2011).

Goal: resetto | 0) a qubit entangled with a memory in a heat bath's presence

While erasing the system and keeping the memory’s state fixed, you can extract work.
Trick: “Burn” the correlations between system and memory.

+ Bell measurement —»
4 possible outcomes, 1 known with certainty —»

I&\Jy L L Have log,(4) = 2 bits

SYSTEM /M/ b

Page 60/117



Pirsa: 22050002

ENTANGLEMENT & ERASURE IN THERMODYNAMICS

Del Rio et al., Nature 474, 61 (2011).

Goal: resetto | 0) a qubit entangled with a memory in a heat bath's presence

While erasing the system and keeping the memory’s state fixed, you can extract work.
Trick: “Burn” the correlations between system and memory.

+ Bell measurement —»
~ B 4 possible outcomes, 1 known with certainty —»
= L 2 Have log,(4) = 2 bits
SYSTEM /Df/l/} + Extract W = 2kgT In2
+ Use kgT In 2 to erase
+ HavekgT 1n 2 left over
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TAKEAWAYS

+ |Information can be used to turn heat into work.
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ENTANGLEMENT & ERASURE IN THERMODYNAMICS

Del Rio et al., Nature 474, 61 (2011).

Goal: resetto | 0) a qubit entangled with a memory in a heat bath's presence

While erasing the system and keeping the memory’s state fixed, you can extract work.
Trick: “Burn” the correlations between system and memory.

— Quantum information/entanglement as a thermodynamic “fuel”

+ Bell measurement —»

4 possible outcomes, 1 known with certainty —»
Have log,(4) = 2 bits

¥ L
L /M/l/} + Extract W = 2k T In2

+ Use kgT In 2 to erase

+ Have kgT 1n 2 left over
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QUANTUM MANY-BODY ENGINE

PHYSICAL REVIEW B 99, 024203 (2019)
[ Festured in Physics |

Quantum engine based on many-body localization

Nicole Yunger Halpern,"**" Christopher David White,"*' Sarang Gopalakrishnan,"***! and Gil Refael"***
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MANY-BODY LOCALIZATION (MBL)

+ Phase of quantum many-body systems
+ Review: Abanin et al., Rev. Mod. Phys. 91,021001 (2019).
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MANY-BODY LOCALIZATION (MBL)

+ Phase of quantum many-body systems
+ Review: Abanin et al., Rev. Mod. Phys. 91,021001 (2019).
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MANY-BODY LOCALIZATION (MBL)

4
E.g., optical lattice

! N

N-1

N
— >

j:l j:l

+ Phase of quantum many-body systems
+ Review: Abanin et al., Rev. Mod. Phys. 91,021001 (2019).
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Page 176 of 308

MANY-BODY LOCALIZATION (MBL)

4
E.g., optical lattice

+ Phase of quantum many-body systems
+ Review: Abanin et al., Rev. Mod. Phys. 91,021001 (2019).

+ If h> J and you measure the particles’ positions, the particles will stay ~static for a long time afterward.
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NYH, White, Gopalakrishnan, Refael, Phys. Rev. B 99, 024203 (2019).

¥ ==L+ o "Sarang specializes in everything that involves
y & | [quantum many-body systems], as well as in a blend
&V i of snideness, dark humor, and resignation that's

gt iy oddly endearing.”
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T

NYH, White, Gopalakrishnan, Refael, Phys. Rev. B 99, 024203 (2019).

¥ =L+ o "Sarang specializes in everything that involves
. & ' [quantum many-body systems], as well as in a blend
& ™% of snideness, dark humor, and resignation that's
gt R  oddly endearing.”
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MBL-MOBILE

NYH, White, Gopalakrishnan, Refael, Phys. Rev. B 99, 024203 (2019).
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MBL-MOBILE

NYH, White, Gopalakrishnan, Refael, Phys. Rev. B 99, 024203 (2019).

+ Quantum many-body engine

+ Run on an Otto cycle
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MBL-MOBILE

NYH, White, Gopalakrishnan, Refael, Phys. Rev. B 99, 024203 (2019).

+ Quantum many-body engine

+ Run onan Otto cycle —» ‘

+ 4 strokes: 2 isentropic, 2 isochoric
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MBL OTTO CYCLE

Shallowly
localized

Ask me about my favorite symmetries!
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MBL OTTO CYCLE

Energies

hlJ

Shallowly Deeply localized
localized
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MBL OTTO CYCLE

Energies

Energy-gap statistics

hlJ

Shallowly Deeply localized
localized
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MBL OTTO CYCLE
Energies

Energy-gap statistics
P(4)

hlJ

Shallowly Deeply localized
localized
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Energies

MBL OTTO CYCLE

Energy-gap statistics
P(4)

Shallowly
localized

Deeply localized

hlJ
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Energies

MBL OTTO

CYCLE

Shallowly
localized

Deeply localized

hlJ
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MBL OTTO
Energies

o—HIUTy)

Z

Shallowly
localized

Deeply localized

hlJ

Page 80/117



MBL OTTO CYCLE

Energies

A‘\b_

hlJ
Shallowly Deeply localized

localized
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Energies

g )

~ (6)

MBL OTTO CYCLE

Adiabatic

Shallowly
localized

Deeply localized

hlJ
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Energies

g )

~ (6)

MBL OTTO CYCLE

Adiabatic

Shallowly
localized

Deeply localized
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Energies

g )

~ (6)

MBL OTTO CYCLE

Adiabatic

(First law: AE

Shallowly
localized

Deeply localized

hlJ
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MBL OTTO CYCLE
Energies

5 0)

Adiabatic (First law: AE

~ (6)

hlJ
Shallowly Deeply localized

localized
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MBL OTTO CYCLE
Energies

hlJ

Shallowly Deeply localized
localized
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MBL OTTO CYCLE
Energies

Shallowly Deeply localized
localized
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MBL OTTO CYCLE
Energies

Shallowly Deeply localized
localized
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MBL OTTO CYCLE

Energies

~ (8)

Shallowly Deeply localized
localized
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MBL OTTO CYCLE
Energies

hlJ

Shallowly Deeply localized
localized
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MBL OTTO CYCLE
Energies

hlJ

Shallowly Deeply localized
localized
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MBL OTTO CYCLE
Energies

hlJ

Shallowly Deeply localized
localized

Pirsa: 22050002 Page 92/117



MBL OTTO CYCLE
Energies

hlJ

Shallowly Deeply localized
localized
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MBL OTTO CYCLE
Energies

hlJ

Shallowly Deeply localized
localized

Why (W_,,) > 0 : We take advantage of MBL's athermal gap statistics.
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SCALING UP TO THE THERMODYNAMIC LIMIT
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SCALING UP TO THE THERMODYNAMIC LIMIT

Number of sites: N
Size of energy band: ~ N

Number of energy levels: 2V

Size of average gap: ~ N/2V > (W)
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SCALING UP TO THE THERMODYNAMIC LIMIT

Number of sites: N
Size of energy band: ~ N

Number of energy levels: 2V

Size of average gap: ~ N/2V > (W)

— 0 in the thermodynamic limit
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SCALING UP TO THE THERMODYNAMIC LIMIT

—i
Mesoscopic subengine

Neus ~10 sites «—— The power is exponentially small in this constant.

Niot Sites <+—— The power growsllinearly with this.

L A

WHAT HAPPENS IN

STAYS IN
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POWER AND EFFICIENCY

Average work out per cycle ~ N,,,W, - (finite-temperature corrections) - (diabatic corrections)

+ Estimate with phosphorus-doped silicon:

+ Power ~ 1071°W ~ IO(prer of «&)

+ Power density
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POWER AND EFFICIENCY

Average work out per cycle ~ N,,,W, - (finite-temperature corrections) - (diabatic corrections)

+ Estimate with phosphorus-doped silicon:

+ Power ~ 1071°W ~ IO(prer of @)
+ Power density ~ 100 kW/m3 ~ 10'1(powcr density of a)
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NUMERICAL SIMULATIONS

+ 1D chainof 12 qubits  + Exact diagonalization

1.4

12

1.0

<08

T
—~
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NUMERICAL SIMULATIONS

+ 1D chainof 12 qubits  + Exact diagonalization

1.4

12

1.0

<08

T
—~
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POWER AND EFFICIENCY

(Wir)
(Qin)

Wy

Jemt

2(6)

+ Efficiency: 7 :=

1

= Mideal-gas = = o=
(V+/V_)(CP Cv)-1
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POWER AND EFFICIENCY

(Wir)
(Qin)

Wy

Jemt

2(6)

+ Efficiency: 7 :=

1

= Mideal-gas = =

Heat capacities
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POWER AND EFFICIENCY

(Wir)
(Qin)

Wy

Jemt

2(6)

+ Efficiency: 7 :=

1

(Vv e

= Mideal-gas = =

Heat capacities
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ADVANTAGES OF THE MBL-MOBILE
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ADVANTAGES OF THE MBL-MOBILE

4

+ Robust scaling
+ High power density (P/V)

+ Reliability (small fluctuations in work outputted during successful trials)
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ADVANTAGES OF THE MBL-MOBILE

4

+ Robust scaling
+ High power density (P/V)
+ Reliability (small fluctuations in work outputted during successful trials)

+ Few worst-case trials (I//,,; < 0)
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PEEKING INTO THE FUTURE

Bring quantum thermodynamics outside to meet the neighbors.

Yunger Halpern, in Information and Interaction: Eddington, Wheeler,
and the Limits of Knowledge, Springer (2017).
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PEEKING INTO THE FUTURE

Bring quantum thermodynamics outside to meet the neighbors.

Yunger Halpern, in Information and Interaction: Eddington, Wheeler,
and the Limits of Knowledge, Springer (2017).

P ; Condensed
Aol - : e
molecular, ' & :
and optical
physics

Chemistry . -.°

High-energy

Biophysics
PRy physics
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PEEKING INTO THE FUTURE
OF QUANTUM STEAMPUNK BROADLY

Yunger Halpern, in Information and Interaction: Eddington, Wheeler,
and the Limits of Knowledge, Springer (2017).

+ Answer pre-existing questions in other fields.

+ Photosynthesis, photovoltaics, exciton hopping in quantum dots, ...
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PEEKING INTO THE FUTURE
OF QUANTUM STEAMPUNK BROADLY

Yunger Halpern, in Information and Interaction: Eddington, Wheeler,
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RECAP

Quantum information theory as a toolkit

for re-envisioning thermodynamics

Information and work as resources in
thermodynamics and computation ————

MBL-mobile ———> ~

+ Many-body localization as athermal

+ Otto cycle
+ Power, efficiency, and 4 advantages
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IN CASE YOU’RE HOOKED... gﬁ

Goold etal.,J. Phys.A49, 143001 (2016).
Vinjanampathy and Anders, Contemp. Phys. 57,4 (2016).
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STEAMPUNK FANS DREAM IT.

QUANTUM-INFORMATION THERMODYNAMICISTS
LIVE IT.
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