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Abstract: Quantum complexity is emerging as a key property of many-body systems, including black holes, topologica materials, and early
guantum computers. A state's complexity quantifies the number of computational gates required to prepare the state from a ssmple tensor product.
The greater a state's distance from maximal complexity, or ~“uncomplexity," the more useful the state is as input to a quantum computation.
Separately, resource theories -- smple models for agents subject to constraints -- are burgeoning in quantum information theory. We unite the two
domains, confirming Brown and Susskind's conjecture that a resource theory of uncomplexity can be defined. The allowed operations, fuzzy
operations, are dlightly random implementations of two-qubit gates chosen by an agent. We formalize two operational tasks, uncomplexity
extraction and expenditure. Their optimal efficiencies depend on an entropy that we engineer to reflect complexity. We also present two monotones,
uncomplexity measures that decline monotonically under fuzzy operations, in certain regimes. This work unleashes on many-body complexity the
resource-theory toolkit from quantum information theory.
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quantum complexity

quantifies the difficulty of
preparing the state from a simple, tensor-product
state, e.g., the n-qubit all-zero state [0").

Quantum (Un)complexity: A Resource for Quantum Computation

Pirsa: 22050001 Page 4/81



Pirsa: 22050001

quantum complexity

quantifies the difficulty of
preparing the state from a simple, tensor-product
state, e.g., the n-qubit all-zero state [0").

Example: on n qubits, the
of a state |¢) is the minimal number of 2-qubit
gates in a circuit that implements a unitary U, with

) = UJo").
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quantum complexity

quantifies the difficulty of
preparing the state from a simple, tensor-product
state, e.g., the n-qubit all-zero state [0").

Example: on n qubits, the
of a state |¢) is the minimal number of 2-qubit
gates in a circuit that implements a unitary U, with

) = Ulo").

We denote the quantum complexity of a state |¢)
by C(|4))-
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Quantum information Complexity quantifies
y the difficulty of discriminating states and

preparing superpositions [ 131,
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Quantum information Complexity quantifies

E T E the difficulty of discriminating states and
preparing superpositions [ 1-3].

Condensed matter Complexities that

C% scale linearly with system size distinguish

topological phases [4.5].
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Quantum information Complexity quantifies

eT) the difficulty of discriminating states and
preparing superpositions [ 1-3].

Condensed matter Complexities that

C%: scale linearly with system size distinguish

topological phases [4,5].

High-energy physics Conjecture in AdS/CFT:

® o the complexity of the field-theoretic state dual
(_/ to a wormhole connecting two black holes is
proportional to the wormhole's length [6-11].
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« An n-qubit state p has maximal

complexity Cpax ~ e™[12].

quantum
complexity

> 4
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An n-qubit state p has maximal

complexity Cpax ~ e™[12].

* The uncomplexity of p isthe
difference between the state’s

complexity and the maximal

complexity: Cpax — C(p)-
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Complexity growth in
systems with random
dynamics [13]

Uncomplexity
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A
Uncomplexity
Complexity growth in Useful states in
systems with random quantum computation
dynamics [13] are "blank” qubits, just

as blank paper is useful
in pencil writing
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Uncomplexity

Complexity growth in Useful states in
systems with random quantum computation
dynamics [13] are "blank” qubits, just

as blank paper is useful
in pencil writing
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Conjecture that
uncomplexity can be
formally understood as
a resource in quantum
computation
(Brown & Susskind) [9]
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Quantum complexity is emerging as a key property of many-body systems, including black holes,
topological materials, and early quantum computers. A state’s complexity quantifies the number
of computational gates required to prepare the state from a simple tensor product. The greater a
state’s distance from maximal complexity, or “uncomplexity,” the more useful the state is as input
to a quantum computation. Separately, resource theories—simple models for agents subject to
constraints—are burgeoning in quantum information theory. We unite the two domains, confirming
Brown and Susskind’s conjecture that a resource theory of uncomplexity can be defined. The
allowed operations, fuzzy operations, are slightly random implementations of two-qubit gates chosen
by an agent. We formalize two operational tasks, uncomplexity extraction and expenditure. Their
optimal efficiencies depend on an entropy that we engineer to reflect complexity. We also present two
monotones, uncomplexity measures that decline monotonically under fuzzy operations, in certain
regimes. This work unleashes on many-body complexity the resource-theory toolkit from quantum
information theory.

arXiv:2110.11371

Quantum (Un)complexity: A Resource for Quantum Computation

Pirsa: 22050001

Page 19/81



THE GRAND SCHEME oF TRINGS:

Quantum (Un)complexity: A Resource for Quantum Computation

Pirsa: 22050001

Page 20/81



Resource

Optimal task

Operational Complexity
tasks entropy

Overview

theory of
uncomplexity

efficiencies

Quantum (Un)complexity: A Resource for Quantum Computation 8

Pirsa: 22050001 Page 21/81



Resource
theory of
uncomplexity

Operational
tasks

Overview

Quantum (Un)complexity: A Resource for Quantum Computation 8

Pirsa: 22050001 Page 22/81



Resource
theory of
uncomplexity

Operational Complexity
tasks entropy

Overview

Quantum (Un)complexity: A Resource for Quantum Computation 8

Pirsa: 22050001 Page 23/81



Resource
theory of
uncomplexity

Operational Complexity Optimal task

tasks entropy

Overview

efficiencies

Quantum (Un)complexity: A Resource for Quantum Computation 8

Pirsa: 22050001 Page 24/81



Quantum (Un)complexity: A Resource for Quantum Computation

Pirsa: 22050001 Page 25/81



Resource theory

Resource
theory of
uncomplexity

Operational Complexity Optimal task

tasks entropy

efficiencies

of uncomplexity

Quantum (Un)complexity: A Resource for Quantum Computation 10

Pirsa: 22050001 Page 26/81



FO OO T wnm Wedmay 1ATAMITEIESIN

a resource theory

”

I ‘ Quantum (Un)complexity: A Resource for Quantum Computation 11

Pirsa: 22050001 Page 27/81



* An agent can perform any
chosen operation that satisfies
simple rules

a resource theory
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* An agent can perform any

chosen operation that satisfies
simple rules

States difficult to prepare are
’ scarce resources, which may

a resource theory facilitate operational tasks
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* An agent can perform any
chosen operation that satisfies

simple rules

States difficult to prepare are
scarce resources, which may
facilitate operational tasks

« Atheory is defined by its allowed
operations on a set of states
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Pirsa: 22050001 Page 30/81



resource theories

Quantum (Un)complexity: A Resource for Quantum Computation 12

Pirsa: 22050001 Page 31/81



7 B

’ Resource theory of entanglement [ 14]
« Free states: separable states

* Free operations: local quantum

operations and classical communication
(LOCCQC)

resource theories
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’ Resource theory of entanglement [ 14]
« Free states: separable states

* Free operations: local quantum

operations and classical communication
(LOCC)

Resource theory of athermality [ 15]

« States: pairs of density matrices and
time-independent Hamiltonians

« Free states: thermal equilibrium
states (Gibbs states)

» Free operations: processes that
conserve total energy under system-
bath heat exchanges

resource theories
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uncomplexity

A fuzzy gate is a gate U implemented w.r.t. a probability distribution
pu,e(U) vanishing outside of the e-ball of a desired gate U, where € > 0
» Distance between gates given by operator norm: ||U — Ul||e < €

* Physical interpretation: model of noise
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uncomplexity

A fuzzy gate is a gate U implemented w.r.t. a probability distribution
pu,e(U) vanishing outside of the e-ball of a desired gate U, where € > 0
» Distance between gates given by operator norm: ||U — Ul||x < €

* Physical interpretation: model of noise

Allowed operations are fuzzy operations: compositions of fuzzy gates
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uncomplexity

A fuzzy gate is a gate U implemented w.r.t. a probability distribution
pu,e(U) vanishing outside of the e-ball of a desired gate U, where € > 0
» Distance between gates given by operator norm: ||U — Ul||e < €

* Physical interpretation: model of noise

Allowed operations are fuzzy operations: compositions of fuzzy gates

No free states!
« Maximally complex (n + m)-qubit state has complexity ~ ™™, but

tensoring together maximally complex n- and m-qubit states only

gives complexity ~ e™ + e™
» Therefore tensoring-on creates uncomplexity!
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COMPLEXITY
IS MEASURED

I STARTED WITH SIMPLE ORIGAMI
N\ PIECES.THE ONES I
"\@ y = MAKE NOWw REQUIRE

Z MORE STEPS.

T LOOKS LIKE
A TENFOLD
INCREASE!
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Resource
theory of
uncomplexity

Operational Complexity Optimal task
tasks entropy efficiencies
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r fuzzy gates
T Sp—
Procedure — —|0) \
e = - S
* Apply to p a circuit of o
<rf p S—— 0)
< r fuzzy gates —ala— ) —\\
il * Select some numberw - - — N
Uncomplexity of the qubits - w
uncomplexity
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Procedure

* Apply to p a circuit of
< r fuzzy gates

* Select some numberw

Uncomplexity of the qubits

Task: Perform the above so
that the selected qubits
are d-close to]0")in trace
distance

Quantum (Un)complexity: A Resource for Quantum Computation
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r fuzzy gates

Procedure

* Apply to p a circuit of
< 7 fuzzy gates

* Select some numberw

Uncomplexity of the qubits

Task: Perform the above so
that the selected qubits
are d-close to]0")in trace
distance

Quantum (Un)complexity: A Resource for Quantum Computation 17

Pirsa: 22050001 Page 44/81



Uncomplexity

setup

Quantum (Un)complexity: A Resource for Quantum Computation 18

Pirsa: 22050001 Page 45/81



2 N

Let M, and M, be the sets of 0- and r-complexity
measurement operators, respectively:

Mo = {@GI0)01,) : oy =0,1) Uncomplexity

M, = {UIQoU, : Qo € M) :
setup

Quantum (Un)complexity: A Resource for Quantum Computation 18
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Let M, and M, be the sets of 0- and r-complexity
measurement operators, respectively:

Mo = {@GI0)01,) : oy =0,1) Uncomplexity

V= {U,:QOUT : QO = MO} §

Setup: Se'l'U p

« Computationally limited referee wants to
distinguish p and 1%™ /2™ with Q € M,
guessing p with probability > 7

* You, the agent, know @ and seek to fool the
referee with a simulacrum p

Quantum (Un)complexity: A Resource for Quantum Computation 18
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Procedure: r fuzzy gates
« Borrow w uncomplex [0)’s
from an “uncomplexity J‘mk) %
bank”, along with an 0} —— a2l
U I it unknown (n — w)-qubit state Fiog | L= | =07]
. < 101
ncom p eXi y gzﬁalyagdry?srjsﬁto the joint uncomplexity referee
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Procedure: r fuzzy gates
» Borrow w uncomplex [0)’s - — . \
from an “uncomplexity 'J‘mk){ N %
bank”, along with an 0) — g 8-
. unknown (n — w)-qubit state f|g> AT | (=27
Uncom p I eXITy « Apply < r gates to the joint uﬁo'nip[e:;ty T

state and yield p

Task: Have the referee, upon
receiving j, guess p, with
probability > 7
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* Entropies are used to
bound the efficiencies of
operational tasks, e.g.,
Shannon entropy for data
compression

complexity entropy
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« Entropies are used to
bound the efficiencies of
operational tasks, e.g.,
Shannon entropy for data
compression

complexity entropy VYt quantify how

«/00n
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uncertain a state looks to a
computationally limited
observer
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The complexity entropy of an n-qubit
state p is, for n € (0, 1],

Definition of
complexity entropy

Quantum (Un)complexity: A Resource for Quantum Computation 23
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The complexity entropy of an n-qubit
state p is, for n € (0, 1],

HL(p) = min  {log, (Tr(Q))} - Definition of
complexity entropy

Tr(Qp)>n

* (@ is constrained to have complexity < r

Quantum (Un)complexity: A Resource for Quantum Computation 23
«/00%
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The complexity entropy of an n-qubit
state p is, for n € (0, 1],

HL"(p) = min  {log, (Tr(Q))} - Definition of
complexity entropy

Tr(Qp)>n

* (@ is constrained to have complexity < r
* Type-l error: @ must successfully identify p
with probability > n

Quantum (Un)complexity: A Resource for Quantum Computation 23
«/00%
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The complexity entropy of an n-qubit
state p is, for n € (0, 1],

HZ"(p) = min  {log, (Tr(Q))} Definition of
i complexity entropy

* (is constrained to have complexity < r

* Type-l error: @ must successfully identify p
with probability > n

« H" gives the minimal possible uncertainty

due to Type-ll error e

Quantum (Un)complexity: A Resource for Quantum Computation 23
«a/00%
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complexity entropy

Limiting cases
* A low-complexity state, e.g., p = [0™)(0"|, may satisfy Tr(Qp) > n for some
performable Q = U,[0™)(0™|U} and will yield H"(p) = log, (Tr(Q)) = log,(1) =

* A high-complexity state may only satisfy Tr(Qp) > n for some performable
Q = U, 1%"U] = 1®" and will yield HL"(p) = log, (Tr(Q)) = log,(2") = n.

Quantum (Un)complexity: A Resource for Quantum Computation
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complexity entropy

Limiting cases
* A low-complexity state, e.g., p = [0™)(0"|, may satisfy Tr(Qp) > n for some
performable Q = U,|0™)(0™|U;! and will yield H?"(p) = log, (Te(Q)) = log,{1) = 0

» A high-complexity state may only satisfy Tr(Qp) > n for some performable
Q = U, 1®"U] = 1®" and will yield H?"(p) = log, (Tr(Q)) = log,(2") = n.

0<Q<1,
Tr(Qp)>n

Relation to hypothesis-testing entropy [Hff( Yi= min_ {log, (Tr(Q))}J

* The hypothesis-testing entropy quantifies the

uncertainty in a hypothesis test between p and 1%9"/2",

e Like the complexity entropy but lacks computational restrictions

Quantum (Un)complexity: A Resource for Quantum Computation
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theory of
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theorems,
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Y &=

Uncomplexity Uncomplexity
entro PY extraction expenditure

theorems,

Each theorem establishes for one of the two tasks

* the of a protocol achieving the task

* the of the protocol
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Uncomplexity Extraction

Let p denote any n-qubit state, r € Z>p, and § > 0.
Assume § > re. For every n € [1 — (§ — re)?, 1], some
protocol extracts w =n — H!""(p) qubits d-close to [0™)

in trace distance.
Conversely, every uncomplexity-extraction protocol

obeys w < n — HP19(p).
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Uncomplexity Extraction

Let p denote any n-qubit state, r € Z>p, and § > 0.
Assume § > re. For every n € [1 — (§ — re)?, 1], some
protocol extracts w =n — H!""(p) qubits d-close to [0™)

in trace distance.
Conversely, every uncomplexity-extraction protocol

obeys w < n — HP1=(p).

Low-complexity limit: some protocol extracts

w = n qubits, others extract w < n qubits.
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Uncomplexity Extraction

Let p denote any n-qubit state, r € Z>p, and § > 0.
Assume § > re. For every n € [1 — (§ — re)?, 1], some
protocol extracts w =n — H!""(p) qubits d-close to [0™)

in trace distance.
Conversely, every uncomplexity-extraction protocol

obeys w < n — HI1=9(p).

Low-complexity limit: some protocol extracts
w = n qubits, others extract w < n qubits.

High-complexity limit: all protocols extract
w = 0 qubits.
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Uncomplexity Expenditure

Let p denote an arbitrary n-qubit state. Let r € Z>
and § > 0, and assume that § > 2re. For every n € (0, 1],
and for every (n — w)-qubit state o, p can be imitated

with w = n — H"(p) uncomplex |0)’s.

€«r/00 *-Quantum (Un)complexity: A Resource for Quantum Computation
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Uncomplexity Expenditure

Let p denote an arbitrary n-qubit state. Let r € Z>
and § > 0, and assume that § > 2re. For every n € (0, 1],
and for every (n — w)-qubit state o, p can be imitated

with w = n — H]"(p) uncomplex |0)’s.

Low-complexity limit: p can be imitated with

w = n qubits.

Quantum (Un)complexity: A Resource for Quantum Computation
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Uncomplexity Expenditure

Let p denote an arbitrary n-qubit state. Let r € Z>g
and § > 0, and assume that § > 2re. For every n € (0, 1],
and for every (n — w)-qubit state o, p can be imitated

with w = n — H"(p) uncomplex |0)’s.

Low-complexity limit: p can be imitated with
w = n qubits.

High-complexity limit: p can be imitated with
w = 0 qubits.

Quantum (Un)complexity: A Resource for Quantum Computation
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Resource
theory of
uncomplexity

Operational Complexity Optimal task
tasks entropy efficiencies
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* Determine properties and
applications of the
complexity entropy
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« Determine properties and
applications of the
complexity entropy

» Describe “phases” of
uncomplexity extraction
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« Determine properties and
applications of the
complexity entropy

» Describe “phases” of
uncomplexity extraction

* Explore connections to
black hole physics

Quantum (Un)complexity: A Resource for Quantum Computation 32
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Resource theory of quantum uncomplexity

Nicole Yunger Halpern,:2%4:* Naga B. T. Kothakonda,®®
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1 Joint Center for Quantum Information and Computer Science,
NIST and University of Maryland, College Park, MD 20742, USA

2 Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA

SITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02188, USA
4 Department of Physies, Horvard University, Cambridge, MA 02138, USA
®Dahlem Center for Complex Quantum Systems,

Freie Universitdt Berlin, 14195 Berlin, Germany
b Institute for Thearetical Physics, University of Cologne, D-50937 Cologne, Germany
T Helmholtz-Zentrum Berlin fiir Materialien und Energie, 14109 Berlin, Germany
(Dated: October 26, 2021)

Quantum complexity is emerging as a key property of many-body systems, including black holes,
topological materials, and early quantum computers. A state’s complexity quantifies the number
of computational gates required to prepare the state from a simple tensor product. The greater a
state's distance from maximal complexity, or “uncomplexity,” the more useful the state is as input
to a quantum computation. Separately, resource theories—simple models for agents subject to
constraints—are burgeoning in quantum information theory. We unite the two domains, confirming
Brown and Susskind’s conjecture that a resource theory of uncomplexity can be defined. The
allowed operations, fuzzy operations, are slightly random implementations of two-qubit, gates chosen
by an agent. We formalize two operational tasks, uncomplexity extraction and expenditure. Their
optimal efficiencies depend on an entropy that we engineer to reflect complexity. We also present two
monotones, uncomplexity measures that decline monotonically under fuzzy operations, in certain
regimes. This work unleashes on many-body complexity the resource-theory toolkit from quantum
information theory.
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