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Abstract: | will present a brief introduction to Nested Sampling, a complementary framework to Markov Chain Monte Carlo approaches that is
designed to estimate margina likelihoods (i.e. Bayesian evidences) and posterior distributions. This will include some discussion on the
philosophical distinctions and motivations of Nested Sampling, afew ways of understanding why/how it works, some of its pros and cons, and more
recent extensions such as Dynamic Nested Sampling. If time/interest permits, | can either (&) highlight how this can work in practice using the
public Python package dynesty or (b) discuss the more general problem of model selection and why Bayesian evidences may (or may not) be
helpful.
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Background

Likelihood Prior
Posterior Pr(D|®, M) PF(O‘M)
Pr(®|D,M) = Pr(D|M)
Evidence

Bayes’ Theorem
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MCMC.: Solving a Hard Problem once.
(Markov Chain Monte Carlo)

Sampling directly from the
likelihood £(®) is hard.

Pictures adapted from this
2010 talk by John Skilling.
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MCMC.: Solving a Hard Problem once.

Sampling uniformly within
L(0) > A bound is easier.

Pictures adapted from this
2010 talk by John Skilling.
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MCMC.: Solving a Hard Problem once.
VS
Nested Sampling: Solving an Easier
Problem many times.

Sampling uniformly within
L(®) > A bound is easier.

X; Xit1

@, P e mlaing N®,
shrink ~ @O \
' '

Pictures adapted from this
2010 talk by John Skilling.
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MCMC.: Solving a Hard Problem once.
VS
Nested Sampling: Solving an Easier
Problem many times.

S f T j T If you have a prior transform that converts your
amplingjuniformly withinj<= priors to look uniform, then this case is equivalent.

L(0) > A bound is easier.

X; Xit1

O I it N®,
shrink ~ CPO v

L ' [}

7 1 ’

Pictures adapted from this
2010 talk by John Skilling.
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Motivation: Integrating the Posterior ===

Likelihood Prior
Posterior Pr(D|®,M) Pr(®|M)
Pr(@|D,M) = Pr(D|M)
Evidence

Bayes’ Theorem
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Motivation: Integrating the Posterior ===

Likelihood Prior

Posterior (0 0,
p(0) = ( )Zn( )
™~

Evidence Ef L(O)n(0)de
Q

Q)

Bayes’ Theorem
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Motivation: Integrating the Posterior ===

fn r(©)de

0

p(V;) = 4

Q
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Motivation: Integrating the Posterior ===

f AdV (1)
(0: p(0)=1}
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Motivation: Integrating the Posterior ===

o “Amplitude”
[ pnava
0

“\Vélume”
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Motivation: Integrating the Posterior ===
Oo“TypicfaI Set”

| rnar@
0
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Motivation: Integrating the Posterior
Oo“TypiclaI Set”

f 2(NAV D)
0

- Posterior
- \/olume
—— Typical Set

dV o rP—1

Amplitude

Distance from MAP See also Speagle (2019)




Motivation: Integrating the Posterior ===

4 Ef L(O)n(O)dO
Q0

0
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Motivation: Integrating the Posterior

7 = f £(0)7(0)d0
Q)

0

XD = f 7(0)de

{0:L(0)>A}
“Prior Volume”

Feroz et al. (2013) b



Motivation: Integrating the Posterior

1
Z=LLGMX

XD = f 7(0)de

{0:L(0)>A}
“Prior Volume”

Feroz et al. (2013)



X(D) = f 7(0)de
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{0:L(0)>A}
“Prior Volume”

Feroz et al. (2013)




Motivation: Integrating the Posterior

n
Z ~ zlji X AX;
=1

I
i
X(1) = f 7(0)d0 .
{0:L(0)>A}
“Prior Volume” L
X D X

Feroz et al. (2013)



Motivation: Integrating the Posterior

XD = f 7(0)de

{0:L(0)>A}
“Prior Volume”

Feroz et al. (2013)



Motivation: Integrating the Posterior

~ ¥
4
.
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P

We get posteriors “for free”
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Motivation: Integrating the Posterior

n
\ R
Z~ ) W
1=1
Weights are proportional
: 3 ; to the typical set!
We get posteriors “for free —
—— Volume
— Typical Set
AN W
Importance ., A Wi =
N F . : i L e —— E
Weight - Pi 4 <
-
Distance from MAP
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Motivation: Integrating the Posterior
oo“TypiclaI Set”

f YAV D)
0

— Posterior
- \/olume
— Typical Set

)

go

S5
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= D—-1

E dV «< r

Distance from MAP See also Speagle (2019)




Motivation: Sampling the Posterior

MCMC.: Solving a Hard Problem once.
VS
Nested Sampling: Solving an Easier
Problem many times.

S i T | T If you have a prior transform that converts your
amplingjuniformly withinj<= priors to look uniform, then this case is equivalent.

L(®) > A bound is easier.

X; Xit1

O TS O
shrink ~y @O 5

N ' [

4 A ’

Pictures adapted from this
2010 talk by John Skilling.
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Stopping Criteria

N
]
D
N

-



Stopping Criteria




Stopping Criteria

VS Wj LmaxXn



Stopping Criteria

4 < W] LmaXXn
j=1

Uniform slab



Higson et al. (2017)
arxiv:1704.03459




Higson et al. (2017)
arxiv:1704.03459




Naive Approach: Sampling from the

Sampling from the prior
becomes exponentially
more inefficient over time.

Higson et al. (2017)
arxiv:1704.03459
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Sampling from the Constrained Prior ===

Proposal:
Try to bound the iso-likelihood contours in
real time.

Feroz et al. (2009)
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Examples of Bounding Strategies

“Live points” (i.e. “chains”)

irsa: 22040129

7
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Unit Cube Single Multiple Overlapping Overlapping
(no bound) Ellipsoid Ellipsoids Balls Cubes

Speagle (2020)
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Examples of Sampling Strategies

Uniform Random Walk
t
b
Proposal
Multivariate Slice Fixed Scale Variable Scale o _
Hamiltonian Slice
(A
o D
Principal Axes Random

Speagle (2020)
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dynesty
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https://dynesty.readthedocs.io

Perimeter-B

Speagle (2020)
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dynesty

* Open-source Python package designed to make (Dynamic) Nested
Sampling easy to use but also easy to customize.

» Designed to be highly modular and can mix-and-match methods.

* Includes built-in plotting utilities and post-processing tools.

https://dynesty.readthedocs.io Speagle (2020)
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Advantages and Disadvantages

Advantages to Nested Sampling:

Disadvantages to Nested Sampling:
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Advantages and Disadvantages

Advantages to Nested Sampling:
1. Can characterize complex uncertainties in real-time.
2. Can allocate samples much more efficiently in some cases.
3. Possesses well-motivated stopping criteria (Skilling 2006; Speagle 2020).
4. Can help perform model selection.

Disadvantages to Nested Sampling:

Implementations require a prior transform.

Runtime sensitive to size of prior.

Overall approach can sometimes miss certain types of solutions.

Sampling is more involved.
Can’t use gradients as “naturally” as Hamiltonian Monte Carlo (HMC).

il P Rl 1RO o=
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Perimeter-B

[ iteration

ep size =~ 1/nl;
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Dynamic Nested Sampling

— L(X)X

1,2,3,4 — LX)

® samples

run

terminates direction of iteration

mean step size = 1/n
——>

log X

Higson et al. (2017)
arxiv:1704.03459
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Dynamic Nested Sampling

— L(X)X
1,2,3,4,5,6,7 — L(X)
e samples
run
terminates direction of iteration
mean step size = 1/n
—
@ S 2 & & L
- 0.0

log X

Higson et al. (2017)
arxiv:1704.03459
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Comparisons

 Fixed number of
samples.

* Only change is in overall

Dynamic Nested
Sampling strategy.
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Comparisons

Static 100% posterior 100% evidence
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Summary

Core Idea Behind Nested Sampling
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How Nested Sampling Works
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Summary

Core Idea Behind Nested Sampling
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Dynamic Nested Sampling

Pirsa: 22040129

How Nested Sampling Works
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