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Abstract: The volume of the interior of atwo-sided eternal black hole classically grows forever. | will derive a microscopic formulafor this volume
in JT gravity by summing the non-perturbative contribution of higher topologies. The non-perturbative corrections lead to the saturation of the
volume of the interior at times exponential in the entropy of the black hole. I will connect the microscopic formulafor the volume with properties of
a "thermo-averaged" density matrix, in particular with its second Renyi entropy, which | argue to measure the number of nearly orthogonal states
visited by time evolution. | will discuss various problems with this interpretation.
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Gabor Sarosi

* Motivation
* The volume of the interior in JT gravity

* Microscopic interpretation
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Growth of the interior

Gabor Sarosi

Black hole interior: an expanding cosmology

Pirsa: 22040122 Page 4/29



Growth of the interior

Gabor Sarosi

Black hole interior: an expanding cosmology
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volume of maximal Cauchy slice « Mt

Question: what is the microscopic origin of this “creation of space”?
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Growth of the interior
Time dependence
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Growth of the interior

=

Gabor Sarosi

Why do we have a chance of seeing something like this in gravity?

Because Euclidean gravity seems to have an
unreasonably large regime of validity, e.qg.

Universal energy level repulsion of chaotic systems

Z(m"‘ao O
’f*ﬁ-:a"’@ S

Both are about corrections coming from summing topologies @

Entropy Page curve of an evaporating black hole

k
Today: how do these effects affect the volume of the interior?
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Plan T
Gabor Sarosi

* The volume of the interior in JT gravity
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Jackiw-Teitelboim (JT) gravity

Dilaton-gravity in two dimensions: Gabor Sarosi

1
== S - 3 | VESR+D - | Vhb(K = 1)

oMl

Arises by dimensional reduction
of near-horizon region of near-extremal black holes

Black hole solution: Global AdS, with a cutoff at large constant ¢

Lorentzian Euclidean

ds*- éo'l-f S‘fﬂb}?c’fl
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Jackiw-Teitelboim (JT) gravity

Higher topologies also contribute, weighted by y(#) =2g+n -2

JT gravity is a matrix integral

[ZB)ir gravity = [dHe‘V(H)Tr[e‘ﬁH]

In the genus expansion
and in the double scaling limit
(large matrix, zoomed to .

the bottom of the spectrum)
8
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Volume of the interior in JT gravity
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Classical volume Gabor Sarosi
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Volume of the interior in JT gravity

Gabor Sarosi !

Non-perturbative quantum volume:

Challenge: infinite number of extremal geodesics on higher genus surfaces

Taking minimal geodesic on each surface is not an option:
we want to continue to Lorentzian!
Euclidean minimal geodesic changes abruptly:
leads to non-analiticity

10
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Volume of the interior in JT gravity !

—

Gabor Sarosi

Non-perturbative quantum volume:
Challenge: infinite number of extremal geodesics on higher genus surfaces
Prescription: average over a well defined set of extremal geodesics

(Z’o> = Z eS0(1—2g) Z (fy)wiggles&moduli space
8 4

Divergent!

Natural regularization:

d

— - Sp(1- —-AZ,

<f> = ‘1&1_% dA 2 Fe o1 -¢) 2 ,(e ")wigglcs&moduli space
g Y

Related to two point function

11

Pirsa: 22040122 Page 13/29



==
i! ‘ "
| - il
A ‘-AE*

Volume of the interior in JT gravity
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Gabor Sarosi

(sum over non-int geodesics turns 1bndy moduli space
into 2bndy moduli space )

12

Pirsa: 22040122 Page 14/29



Volume of the interior in JT gravity

il
ReSUH:: Gabor Sarosi
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In matrix integrals, universally:
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Volume of the interior in JT gravity

Result: Gabor Sar_osi
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Volume of the interior in JT gravity

Pirsa: 22040122
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Volume of the interior in JT gravity

Very similar quantity: spectral form factor Z(f — in)Z(p + it) = SFF(¢) Gabor Sarosi

M(E,, Ey) for (£(1))

0 ~3B(E + E,)—i(E; - E))t
L dE\dE(p(E))p(Ey))e X {1 for SFF(7)

Volume

SFF |

\\ /

(P(EDp(Ey) = (p(ED)p(Ep) + (p(E))S(E, — Ep) —
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nX(E, — E,)?
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Volume of the interior in JT gravity

Very similar quantity: spectral form factor Z(f — in)Z(f + it) = SFF(z) Gabor Sarosi

M(E, E,) for (£(2))
1 for SFF()

ro dE\dEy(p(E p(Ey))e2 i+ B)=iF~ Bt {
0

Volume
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(P(EDp(Ey) = (p(ED)p(Ep) + (p(E))S(E, — Ep) —
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* Microscopic interpretation
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Spectral complexity

The final formula for the volume makes sense in any matrix integral,

can also be derived for more general dilaton potential
(with methods of )

Call it spectral complexity .

€@ =

1
Y ————ePEE[1 - cos(E; — E)1]

1
ZPB7 & 15 - BP

Can we interpret this quantity?
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Time-averaged density matrix

An extremely simple proxy for complexity:

How much of the Hilbert space is spanned by time evolved
thermofield double states up to a given time?

{e7H!|TFD) |t < T}

Consider the density matrix:

1 (7 . _
p(T) = ?[ dte”H'| TED)Y(TFD | ¢!
0

First guess: rankp

However, instantly full rank due to extremely small eigenvalues

Replace rank with number of eigenvalues bigger than some threshold:

rank.p = 2 1=TrO(p —¢)
A>e€
k

18
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Effective dimension

Gabor Sarosi

rank.p = Z 1=TrO(p —¢)

A>e

How is it a proxy for complexity?

Consider an ensemble of states &, C(%) = min. num. of gates to prep. &

log| & |
log choices

then C(%) >

19
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Effective dimension

Gabor Sarosi

— .‘—A!,:i’

rank.p = Z 1=TrO(p —¢)

A>e

How is it a proxy for complexity?

Consider an ensemble of states &, C(%) = min. num. of gates to prep. &

log| & |

then C(%) > -
log choices

C(®) is also (roughly) the complexity of the most complex state in &
L3

19
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Effective dimension

Consider an ensemble of states &, (%) = min. num. of gates to prep. &

log| €|

then C(%&) > -
log choices

Take &, = subspace with p(T') eigenvalues > ¢

| &1| o VOI[CP™kA(T)=1] o granker(T)-1

C(&;) > #(rank p(T) — 1)

Tempting to think that the most complex state in the setis U, | TFD)

Superposing U, |y), U§| y/),{]gtllp) is cheap but does have an overhead

20
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Effective dimension

C(&y) > #(rank p(T) - 1)

rank. p = Z 1 =TrO(p —¢)

A>e

Difficult to compute, but there is a simple lower bound

Cauchy-Schwarz: Trip\/O(p — €)] < \/ TrO(p — €)Trp?

l

1
Minimized for p = El

(use regularized © to show)

1 .
rank.p > 75 = ds " providede < d!
D
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Connection to the volume

i
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E:b:Sarosi
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¢ Proxy for complexity o Early time slope different
« Direct function of the 1° BT

d.c ~ ~
late time volume in gravity T ger) T 2

e Saturation independent of
volume saturating
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More cons: Switchback states

—
= 1
R |
[] | -
IE =

Gabor Sarosi

We should understand the dual of the volume in other states than the TFD

tr=0

Both for complexity
and volume:
ly) = O(—1,) | TFD) i
t=—1,
(0]
Effective dimension Volume in JT

p= J U,|TFD)(TFD|U._,

5 One can derive a microscopic

formula involving limits

tO )
+J U,O[U_IO | TEDY(TFD| U,O] o', of 6j symbol
0

Stay tuned...

Claim: Trp? depends only on 2pt func.
Does not know about scrambling

23
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Summary

Gabor Sarosi

Defined regularized non-perturbative volume in JT gravity

Showed that it saturates at 1 « ¢%, which is expected from complexity

Result is similar to SFF, but the origin of “ramp” and plateau are different

Volume is dual to a simply calculable quantity, dubbed spectral complexity

Questions

Can spectral complexity match some definition of complexity?
Or give a bound?

Is the time-averaged density matrix relevant?

What can we say about other states than the TFD?

24
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