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Abstract: Quantifying quantum states complexity is a key problem in various subfields of science, from quantum computing to black-hole physics.
I'll explain two approaches to understanding the behavior and the operational significance of quantum complexity in many-body systems. First, I'll
consider a simple model on n qubits: We create a random gquantum circuit by randomly sampling the gates that compose it. In this model, quantum
complexity can be shown to grow linearly in the number of gates until saturating at a value that is exponential in n. This result proves aversion of a
conjecture by Brown and Susskind in the context of quantum gravity, thereby reinforcing our understanding of the evolution of wormholes in
holography. Second, I'll discuss how guantum complexity manifests itself in the operational processes that we can carry out on an n-qubit system.
For instance, what resources are necessary to reset an n-qubit memory register to the pure all-zero computational basis state? This approach reveals
a connection between thermodynamics and complexity, as we exhibit a trade-off between the thermodynamic work cost that is necessary for the
reset procedure and the complexity cost of the procedure. The general trade-off is quantified by a new measure of entropy which directly connects
complexity with entropy. I'll discuss the implications of our results and new prospects for many-body physics in the regime where quantum states
are of ever increasing complexity.
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Physics at the
complexity frontier

How can we make sense of the immensity
of the Hilbert space of n qubits?
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» Why should a physicist care about quantum
complexity?

» Canwe understand how quantum complexity
grows in time in chaotic quantum systems?

» How does quantum complexity manifest itself
in physical/operational aspects of the system?
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In AdS/CFT, physicsin the bulk (AdS) has a
dual description on the boundary (CFT).
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» Canwe understand how quantum complexity

orows in time in chaotic quantum systems?
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many-body circuit with gates
Hamiltonian chosen at random
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> thefirst few rotations
explore “new directionsin
rotation space”

> Any rotation of the 2-sphere
can be decomposed into at
most 3 rotations around X, Z
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> |ldea:in arandom circuit, each new gate
likely explores a new direction in SU(2")
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Theorem: With unit probability, a random
n-qubit circuit with R < 4" two-local
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Theorem: With unit probability, a random
n-qubit circuit with R < 4" two-local
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» How does quantum complexity manifest itself
in physical/operational aspects of the system?
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» Thermodynamics d@ Ccribes what processes
can be performed on a system by a
macroscopic observer.

Pirsa: 22040118 Page 32/49




» Thermodynamics describes what processes
can be performed on a system by a
macroscopic observer.

» How does quantum complexity manifestitself
In the resources required to carry out a process
onasystem?
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» General trade-off between work cost and
complexity cost to reset a state to zero
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plooks very mixed atthis  phaslow entropyinthe eyes of a
complexity scale: high computationally powerful agent:
work cost for erasure low work cost for erasure

» Operational meaning of complexity entropy =
amount of work required to reset a state in the
eyes of an agent who can perform at most r gates
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» Towards aunification of the second laws of
thermodynamics and of complexity:

r,n .
H,"'(p) tendstoonlyeverincrease ?

» Resource theory of complexity: monotone?

» Complexity-aware replacement of “entropy”
for physics in high complexity regimes?
(e.g. spin-glass, phase transitions, exotic phases
of matter?)
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Quantifier for data compression with computational
limitations & quantum pseudorandomness

Thermodynamic erasure with a
quantum memory? Work cost of

general quantum processes?
With nontrivial Hamiltonians?

Complexity in the resource
theory of thermodynamics?
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Computing / bounding the complexity entropy
in certain regimes?

entanglement bounds k-designs

Complexity entropy in AdS/CFT?

Signatures of chaos?

Conditions for thermalization at
different complexity scales?

complexity of guantum

quantum complexity heat engines?

and quantum error
correction? quantum machine learning?
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