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Abstract: While Quantum Field Theory is the most accurate theory we have for predicting the microscopic world, there are still open problems
regarding its mathematical description. In particular, the usua quantum mechanical description of measurements, unitary kicks, and other local
operations has the potential to produce pathological causality violations. Not all local operations lead to such violations, but any that do cannot be
physically redlisable. It is an open question whether a given local operation in the theory respects causality, and hence whether a given local
operation isphysical. Inthistalk | will work toward a general condition that distinguishes causal and acausal local operations.
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Introduction

* Initial question: Is the textbook description of measurement in quantum theory, in terms of states,
operators, and the projection postulate, consistent with relativity in the setting of QFT?

* QFTis arelativistic theory, in the sense that it makes accurate predictions in systems where relativity
is very relevant.

* These predictions come from scattering probabilities in the theory, which are approximations to the
real system, e.g. the state is prepared in the infinite past, and measured in the infinite future, and
measured across all of space.

*  What if we ask more of QFT? Can we use the textbook description of measurement to describe multiple
(spatially and temporally finite) measurements in the same background spacetime?

* Can go down the route of measurement models, e.g. Unruh-DeWitt detectors or other probe fields. In
any model, tracing out any auxiliary systems gives rise to some update map for the main system of
interest.

* Herel will be concerned with the physically possible update maps; those that could, at least in
principle, arise from some physical operation.
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* Setup and background

— Quantum Field Theory
~ Lgcal Operations

* Causal Operations

—  Sorkin’s Scenario

— Causality condition

* Discussion

Pirsa: 22040107 Page 4/46



Quantum Field Theory

* Realscalar field theory in Minkowski spacetime = —F 4T ™
* Field operator-valued distribution: By = BRI e
d3p 1 . . ' {CL" GT-.] - (277)3(5(3J (_,—‘7 (—-j
I}, Bl = (aﬂew-fﬂ + atezp-o:) 5 Og P—q

e  Vacuum state: |0)

; . ) t 4@@ = (21)*® (5 - @) ‘
*  Non-normalisable single particle states: |p) = aﬁ\O)

d? :
* Single particle Hilbert space, H, consists of states like: |¢) = / (273)93 e@)) . (P € L*(R?)

* Bosonic Fock space: F' = EB?LOZO (H®n)

* Self-adjoint operators, A" = A, on F correspond to observable quantities

» (U|A|P) or tr(pA) interpreted as expectation value of observable
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Quantum Field Theory ‘_ b

L

rm \ )
Fewster, Rejfun |Jeu?f LMH@ ‘a

* Integrate, or smear, ¢(t,Z) with a test function f(¢, Z) to get an operatoron F

A
t

* Smeared field operator:

o(f) = / e f(t, B)o(t, F)

d>p 1 >

(27)3 \Ef(%,ﬁ)*\ﬁ) v

* Algebra, [, corresponds to complex sums :
of products of smeared fields and the
identity I, e.g. ‘
O(f1)o(f2) + id(f3)° + 41

* Example action: ¢(f)|0>:/

A
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Quantum Field Theory ‘x S

Fewster, Rejf:n é?f MML ) i

* Integrate, or smear, ¢(t,Z) with a test function f(¢, Z) to get an operatoron F

A
t

* Smeared field operator:

o(f) = / e f(t, B)o(t, F)

d>p 1 >

(27)3 \Ef(%,ﬁ)*\ﬁ) v

* Algebra, [, corresponds to complex sums :
of products of smeared fields and the
identity I, e.g. ‘
O(f1)o(f2) + id(f3)° + 41

* Can also consider functions of such
operators, e.g. eiczb(f)

* Example action: ¢(f)|0>:/

A
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Quantum Field Theory ‘

Fewster, Rejz.a:‘:i?f L: A\ fvgﬁ

* Commutation relations for smeared fields: 5 3 o
(62 2), ot ") =4AH3.1 &)
o(f), d(g)] = /d4$d4$’f(t:f) ', 2)[6(t, %), ¢(t', 7] Pauli-Jordan function (difference
' of retarded and advanced Green
— i/d4md4w’f(t,f) ', ZAGR,Z,t,T) functions) vanishes for spacelike
points
A

[#(f1),0(f2)] =0  assupports spacelike
)8

[6(f1.2),0(f3)] #0  as supports timelike
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Quantum Field Theory

Fewster, Rejf: e, dis

* For each subregion R, can form the associated subalgebra:

t

9,
(A, A]=0, YAeAR), VA € AR

* Einstein Causality: subalgebras associated to spacelike regions commute:

[A(R),AR)] =0
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Setup and Background

Local Operations




Local Operations

Example: consider the ideal measurement associated with some diagonalisable self-adjoint operator:

AeU(R), AT=A, A=) MNPy

Non-selective ideal measurement amounts to the state-update:

pHé'A ZPin

Updated state is useful for calculating expectation values of other operators: tr(£9(p)B) = tr(p(B))

* Wecan instead focus on the dual map which updates operators:

Bl—>5A ZPBP
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Local Operations ‘h )
lan Jubb I.‘Iﬂ;h.;l‘mll"\‘{__ A8

* Example: consider the ideal measurement associated with some diagonalisable self-adjoint operator:
AcUR) , A=A, A=) \P,, B~ EY(B)=) P,BP,

A
t

. i . A,B :0, Pn,B:U
Spacelike case: | ] [ ] A € A(R) B e AR

SiBy=3 BuBPy=) FB=5B - .

* Ingeneral, for any spacelike region R’,

5,91(')\%’@) =1
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Local Operations

«  Example: unitary kick with some self-adjoint operator A € A(R) , AT = A

B Ua(B) = et Be 4

* If operators are localisable in spacelike
regions, then [A, B] =0

and Z/{A(B) = BiABB_iA =B

* In general, for any spacelike region R’,

Pirsa: 22040107

A€ Q[(R) Bc m(Rl)

Ua()|aury = 1
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Local Operations

«  Example: weak measurement of some self-adjoint operator A € A(R) , AT = A

5 il _A-e?  (A-o?
B > WA(B) — \/W Rdae 402 Be 402

* Again, A

Wi (lary =1
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Local Operations ‘h LA .

o a0 [\ bl

Definition. (local)

A completely positive trace-preserving map is local to a region R if, for any spacelike region R’,

* Einstein causality ensures that any map, £4(-), constructed from a local operator, A € A(R),
in some functional way, e.g. £9(-) , Ua(-), W5(-), islocalto R

* This locality condition ensures that expectation values, and probability distributions, associated
with spacelike operators are unchanged, e.g.

tr(pEr(B)) = tr(pB) , VB € A(R')
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Local Operations

. lan Jubb " \ )
Hellwig, Kraus, FiTys. k¢

* Multiple local operations:
A

Note the opposite order
of composition, as maps
are acting on operators
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Local Operations

* Multiple local operations associated to local operators:
A

A e AR o EA(EA ()

Note the opposite order
e, of composition, as maps
are acting on operators
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Local Operations

* Multiple local operations associated to local operators:

A

A e A(R)

A € A(R)

For spacelike regions, Einstein causality
ensures that maps constructed from
local operators commute, i.e.

Eal€ar(-)) = Ear(€al’))
9,
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Causal Operations

Sorkin's Scenario




1
Sorkin’s Scenario ‘ Q .

25 AN )

* Consider 3 agents, Aoife, Caoimhe, and Beolagh, acting in their respective regions:

- Caoimhe 9,

Aoife
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Sorkin’s Scenario

Sl A T

* Consider 3 agents, Aoife, Caoimhe, and Beolagh, acting in their respective regions:

4 Er,(A3z) # Az 1) Aoife performs local operation described by the

t As € Q[(RS) update map:

Er, (-
fr() G )

. Beolagh 2) Caoimhe performs local operation described by the
Er, () <RI

update map:
- Caoimhe 5R2 ()
Aoife 3) Beolagh measures the expectation value of some
. > local self-adjoint operator.

Pirsa: 22040107
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Sorkin’s Scenario

* Consider 3 agents, Aoife, Caocimhe, and Beolagh,
acting in their respective regions:

A

Ery() B
Er, () - Beolagh
. Caoimhe

Aoife

>

I
1) Aoife performs local operation described by the
update map: En ()
1

2) Caoimhe performs local operation described by the
update map: 5R2 ()

3) Beolagh measures the expectation value of some
local self-adjoint operator.

Pirsa: 22040107

Composition rule says this expectation value given by

tr(pEr, (Er,(A43)))

BUT, Aoife is causally disconnected from Beolagh,
and hence Beolagh’s expectation value should be
the same as if Aoife was not there, i.e.

tr(pEr,(As))

As an operator equation we want:

Er, (ER,(A3)) = Er,(A3)

whenever Aoife’s region is spacelike to Beolagh’s

Einstein Causality does not ensure this
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Sorkin’s Scenario

* Consider 3 agents, Aoife, Caocimhe, and Beolagh,
acting in their respective regions:

A

Ery() B
Er, () - Beolagh
. Caoimhe

Aoife

>

I
1) Aoife performs local operation described by the
update map: En ()
1

2) Caoimhe performs local operation described by the
update map: 5R2 ()

3) Beolagh measures the expectation value of some
local self-adjoint operator.

Pirsa: 22040107

Note, if there is some operator that Beolagh can
measure such that

ERr, (ERr,(A3)) # Er,(AH

then for some state we get
tr(pEr, (Er,(As))) # tr(pEr,(As))

That is, Beolagh can tell (to within some confidence
level) whether Aoife has acted or not based on
differences in their measured expectation value,i.e.
Aoife can signal Beolagh

This clearly cannot be possible, since such a signal
would have to travel faster than light!
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Sorkin’s Scenario

* Consider 3 agents, Aoife, Caocimhe, and Beolagh,
acting in their respective regions:

A

Ery() B
Er, () - Beolagh
. Caoimhe

Aoife

>

I
1) Aoife performs local operation described by the
update map: SR ()
1

2) Caoimhe performs local operation described by the
update map:
P P 5R2 ()

3) Beolagh measures the expectation value of some
local self-adjoint operator.

Compare to systems in Quantum Information, e.g.
some finite dimensional bipartite Hilbert space:

H=H,® Hp
Aoife’s region like part A of bipartite Hilbert space
Beolagh’s region like part B of bipartite Hilbert space

Caoimhe acts on both parts of the Hilbert space. We're
then asking if her actions enable a signal from Aoife to
Beolagh

If they do, they cannot be implemented faster than
the light travel time from part A to part B

In the relativistic setting of QFT, the spacetime
locations of any actions are ‘baked in’. Thus, any
signal in this setup is superluminal, in which case
Caoimhe’s map cannot be implemented at all
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Sorkin’s Scenario

* Consider 3 agents, Aoife, Caocimhe, and Beolagh,

acting in their respective regions:
g P g * Note, if there is some operator that Beolagh can
A

¢ As € A(R) measure such that
Er, (+) . Beolagh Ep (Ep (AN £ Ep (Ao)

Caoimhe
& () CBD

Aoife

We can also ask whether Caoimhe’s
map enables a signal in the case
where it is not even local 3))

>

3
& * Tha Lo (Ep. (A)) = En (A fidence

R 41 3)) — ¢“R 3
1) Aoife performs local operation described by the leve ' ( ’ ( )) ’ ( z/on

update map: gRl () differences in their measured expectation value, i.e.
Aoife ca@ﬁ signal Beolagh

2) Caoimhe performs local operation described by the

update map: Er, (+)  Thisclearly cannot be possible, since such a signal

3) Beolagh measures the expectation value of some would have to travel faster than light!
local self-adjoint operator.
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Causal Operations

Examples




Examples (causal)

* Startin the vacuum state

A
1) Aoife performs local operation described by the : ¢(fz) € A(R3)
update map: Ups) (1) = e'?(f1) ()T (1) Up(£,7(*) -
2) Caoimhe performs local operation described by the Up(11) (+) - BeeiegN
update map: Ud)(fz)(') — ei¢(fz)(.)e—i<i>(fz) - Caoimhe
3) Beolagh measures the expectation value of some Aoife >
local smeared field operator. x

D
* Beolagh’s expectation value:

(OUs( 1) U (1) (9(£3)))]0) = (0?1 eiolf2) g( f3)e~0(f2)e~i0(f1)|0) %@b(h)ﬁ(ﬁ”:m(hah)\
= (0[e**UV) (¢(f3) + A(f3, f2)) e~ @U1)|0)

9,
No dependence on — ‘ L ‘
Aoife’s field % (Ol¢(f3) + Alf3, f2)]0) ﬁ(fﬂ,é(ﬁ)] =0]
= A fe) T ()0 =0 |
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Examples (acausal)

* Startin the vacuum state

A
1) Aoife performs local operation described by the b ¢(fz) € A(R3)
update map: Up 5y (-) = e'?(f1)()e (/1) Uy 2 (+) -
2) Caoimhe performs local operation described by the Us(r) () - Sediegn
update map: uqb(fg)?(') _ €i¢>(f2)2(_)e—i¢(f2)z - Caoimhe
3) Beolagh measures the expectation value of some Aoife .
local smeared field operator. x

D
* Beolagh’s expectation value:

Oty 1y U )2 (B(£3)))10) = <0€i¢(fl)ei¢(f2)2¢(f3)ei¢(f2)28iqﬁ(fl){))%@b(fS):é(fQ)] = iA(fs, f2) |

= (0] (¢(f3) — 2R f2, f3)9(f2)) e~ |0) -
— Z2A(fa, £2)(016(f2) — Afr, £2)[0) el =0

\@(fl),d»(fz)l 0]
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Examples (acausal)

* Startin the vacuum state

A
1) Aoife performs local operation described by the b ¢(fz) € A(R3)
update map: Up 5y (-) = e'?(f1)()e (/1) Uy 2 (+) -
2) Caoimhe performs local operation described by the Us(r) () - Sediegn
update map: uqb(fg)?(') _ €i¢>(f2)2(_)e—i¢(f2)z - Caoimhe
3) Beolagh measures the expectation value of some Aoife .
local smeared field operator. x

D
* Beolagh’s expectation value:

Oty 1y U )2 (B(£3)))10) = <0€i¢(fl)ei¢(f2)2¢(f3)ei¢(f2)28iqﬁ(fl){))%@b(fS):é(fQ)] = iA(fs, f2) |

= (0[e*?UV) (¢(f3) — 2A(f2, f3)¢(f2)) e~ *U1)|0) -
— O (fa f2)(06(f2) = Al £2)[0) AR

= 2A(fi, fQ)A.(anf?)) \[Cb(fl)a(b(fz)] #0 ‘
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Examples (acausal)

* Startin the vacuum state

A
1) Aoife performs local operation described by the b ¢(fz) € A(R3)
update map: Up 5y (-) = e'?(f1)()e (/1) Uy 2 (+) -
2) Caoimhe performs local operation described by the Us(r) () - Sediegn
update map: ugb(fg)?(') _ €i¢>(f2)2(_)e—i¢(f2)z - Caoimhe
3) Beolagh measures the expectation value of some Aoife .
local smeared field operator. x

D
* Beolagh’s expectation value:

Oty 1y U )2 (B(£3)))10) = <0€i¢(fl)ei¢(f2)2¢(f3)ei¢(f2)28id)(fl){))%@b(fS):é(fQ)] = iA(fs, f2) |
= (0™ (4(f3) — 2A(fa, f3)d(F2)) e~ |0)

t’epe"dence /g = ~2A(f2, S)016(f2) = A1, 2)10 okl

Aoife’s field
— ZA(flan)A(f2af3) \b(fl)gb(
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Causal Operations

Causality condition




Causality condition

* Formalise what we have seen:

Definition. (causal w.r.t)

'+

A completely positive trace-preserving map, £(-),
A is causal with respect to amap £r(+) (localto R) if, for all
! A’ e A(R) R’ spaceliketo R,and all A’ € 2(R’), then

¢r() - Er(E(A)) = E(A)

Without reference to any A’ € 2A(R’) we could write

ER(E())|acry = E(-)
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Causality condition

* Remove dependence on specific map localto R

Definition. (causal)

A completely positive trace-preserving map, £(-),
A is causal if, for all regions R, it is causal w.r.t. to all maps
G A’ e A(R) localto R,i.e.

ey EO) Er(EC) ) = EC)

for all R and all completely positive, trace-preserving

” maps, Er(-), localto R.
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N '
Causality condition |

lan Jubb M\‘

* Venndiagram:

CP + trace-preserving

local

strongly
causal

causal w.r.t
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Causality condition

* Venndiagram:

CP + trace-preserving

local
Us(p) () Us(p)2 ()
strongly )
causal Wan ()
Sf(f)(-) Wi (52()

causal w.r.t
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Causality condition

* Venndiagram:

CP + trace-preserving

local
Us(s) () Us(pyz2 (")
strongly Uni () i
causal WS.() Wain()
g5 () 5

A

causal w.r.t
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Causality condition

Definition. (commutant)

Given some subalgebra, 2(( R), the commutant is given by

AR)T ={AcA|[A,B]=0, VB cAR)}

Causal complement 2A(R) Haag duality

RY = M\ (JT(R)UJ(R)) - A(R') c A(R)*
: ’ . ' .
A(RL) = A(R)
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Causality condition

 Sufficient condition for strong causality: o g ;
E z Definition. (commutant non-increasing, CNI)

A completely positive trace-preserving map, £(-),
is commutant non-increasing (CNI) if, for all regions R , it

; 4 £() does not increase the commutant 2A(R)", i.e.
(B EQA(R)T) C AR
AR
1
- AR) forall R.
Er(-) 9, Note, any map local to R acts trivially on the commutant,
> and thus, for any spacelike R’,

Er(E())ary = E(°)

This is the criteria for strong causality.
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Causality condition

* Venndiagram:

CP + trace-preserving

local
Up(r)(+) i
strongly Un () o) ) o2 (")
cagsal  CNI e () Wain ()
E5in () -
o) Wes)2()

causal w.r.t
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Causality condition

* Venndiagram:

CP + trace-preserving

4 local
weakly )/ U () Us(p)2 (")
causal ~ Strongly / o

CGUSO‘I CNI WKTL() %‘\ } W¢(f)() /}';
NG Waipye ()

causal w.r.t
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Causality condition

Rough argument why weakly causal implies CNI:

» Aweakly causal map, £(+), is causal w.r.t all strongly causal local maps, £r(-), for all regions
R. This includes all unitary kicks with smeared fields in R:

CP + trace-preserving

blin
Bhaila Atha Cliath dwans
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Causality condition

Rough argument why weakly causal implies CNI:

» Aweakly causal map, £(+), is causal w.r.t all strongly causal local maps, £r(-), for all regions
R. This includes all unitary kicks with smeared fields in R:

CP + trace-preserving

focal

v
/Uy () e Uy(p)z(-)

Up(5)(E(Nlarry = E() , Ve CE(R)
*  From this we can deduce that, for any £(4) commutes with 2(R) forall A € A(R") = A(R)*

*,
*  Thus, EQ(R)T) CA(R)*,i.e. the map is CNI.
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-

. » ‘ i
Causality condition 3

200 MuA |

* Summary:

CP + trace-preserving

local
U . e
causal = CNI Uni() s ) Up(s)2 ()
WE () Wain ()
G . a
o () W2 ()

causal w.r.t
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Discussion

Open questions/problems
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Open questions/problems

*  Where do ideal measurements fitin?

If they are acausal, is there a CP + trace-preserving
‘reasonable’ substitute for the
rojection postulate? 0 local
et E5() 2
causal = CNI Uny()  Henl) ) U2 ()
W% () ﬁvé(f)(')
£ Wiz ()

causal w.r.t
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Open questions/problems

*  Where do ideal measurements fitin?

If they are acausal, is there a CP + trace-preserving
‘reasonable’ substitute for the
rojection postulate? 0 local
proj P £9() 2
Uu () L{¢ 2
*  What does this picture look causal = CNI Une() b _— p(2()
like for fermionic field theory Wi () . )¢(f)
and gauge theory? 2 Wi ()

* Can all the causal maps be
realised via local couplings to
auxiliary systems? A local causal w.r.t
Stinespring’s Dilation Theorem? 9,
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