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I am pleased at the opportunity to talk on
Noether’s theorems. Two years ago, I had little
interest in the topic, however, in the last two years,
my research has lead in a direction which altered
my attitude. I need them in my present work, and
| came to be sorry that I had not understood their
role in several topics I tried to learn in the past.
This talk is definitely from a mathematics
perspective, although I wil throw in a little physics
in the very end.
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Many people, including non-academics, became
aware in 2015 that Einstein’s theory of general
relativity was announced in 1915. This theory
did not come out of thin air, and during its
formative period, there were a group of
mathematicians competing with Einstein as well
as cheering him on. In particular, Einstein
visited Gottingen in 1915 and gave a series of
lectures which were enthusiastically received. A
correspondence between David Hilbert and
Einstein followed, and Hilbert himself made the
contribution with a variational formulation of
Einstein’s equations. One of the puzzlements of
the new theory was that no conservation laws
for energy and momentum could be found for
the new equations. These were readily
discovered 1n special relativity, which had made
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relativity was announced in 1915. This theory
did not come out of thin air, and during its
formative period, there were a group of
mathematicians competing with Einstein as well
as cheering him on. In particular, Einstein
visited Gottingen in 1915 and gave a series of
lectures which were enthusiastically received. A
correspondence between David Hilbert and
Einstein followed, and Hilbert himself made the
contribution with a variational formulation of
Einstein’s equations. One of the puzzlements of
the new theory was that no conservation laws
for energy and momentum could be found for
the new equations. These were readily
discovered in special relativity, which had made
clear the link between the two.
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In 1915 Emmy Noether had been invited by
Hilbert and Klein to come to Gottingham, and
had probably been in the audience for Einstein’s
lectures. “Miss Noether”, as she was referred to
at the time, was the daughter of the
mathematician Max Noether and sister to
another mathematician Fritz Noether. At the
time, higher eduction in Germany was not open
to women, but she had managed to write her
doctoral thesis in 1907 in Erlangen under the
supervision of the algebraist Paul Gordon. She
had published a number of papers on invariant
theory, and it appears that Hilbert simply
assigned her the problem of looking into the
problem of the lack of conservation laws for
energy in general relativity. From surviving

Page 7/81



Pirsa: 22030111

time, higher eduction in Germany was not open
to women, but she had managed to write her
doctoral thesis in 1907 in Erlangen under the
supervision of the algebraist Paul Gordon. She
had published a number of papers on invariant
theory, and it appears that Hilbert simply
assigned her the problem of looking into the
problem of the lack of conservation laws for
energy in general relativity. From surviving
correspondence of the time, it appears that there
were preliminary results as early as 1916, but it
was not until 1918 that the breakthrough insight
which explained the problem came. Her paper
“Invariant Variational Problems” was presented
in July of 1918 with a dedication to Felix Klein
on the 50th anniversary of his doctorate.
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familar to applied mathematicians and
physicists. My apologies.

“Part I. If the integral I is invariant under a
(group) G, then there are o linearly
independent combinations among the
[agrangian expressions which become
divergences - and conversely, . .. ©

“Part 1. If the integral I is invariant under a
group) G ee depending on e arbitrary functions
and their derivatives up to order k, then there
are Q identities among the Lagrangian
expressions and their derivatives up to order k,
and conversely.
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Some Explanation

The integrals in Noether’s theorem are of the
very general form

[ = SS F(x, t‘(x),dl‘(.\'),...,Dmf(x)) dx"
o

Here f=¥ = (y', Y)is vector valued and yo= D.f
is a multi index derivative indicating the partials
up through some fixed order k, as in all the
general PDE books 1 studied as a graduate
student. We would now call Fdx a volume
valued function on the jet bundle. The function
F is classically called the Lagrangian. However,
Noether discusses symmetries of the Lagrangian
density L= Fdx Some of the first variational

Pirsa: 22030111
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Here f=9 = (y', yMis vector valued and y2= D,§"
is a multi index derivative indicating the partials
up through some fixed order k, as in all the
general PDE books I studied as a graduate
student. We would now call Fdx a volume
valued function on the jet bundle. The function
F is classically called the Lagrangian. However,
Noether discusses symmetries of the Lagrangian
density L = Fdx Some of the first variational
problems (the brachistochrone), like most of the
ones we use in geometry, do involve
minimizing. Many involve finding a critical
point. Ata minimum or more generally a
critical point u, the first variation $I under an
arbitrary deformation called §u equals zero. a
trick invented by Newton. The equations
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derived in this fashion are called the Euler-
Lagrange equations. The general form of the

Euler-Lagrange equations for the most general
example of Noether’s is the system of equations

(i ;
7: (=) D?F o (,u, du, D)= 0. As0,..™
¢ kL
Hilbert’s integrand for general relativity 18
L(g) = R(g) du(2).
Here g is a metric on space-time, R(g) is the

scalar curvature an dm(g) the induced volume
form. The Euler-Lagrange equations are
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7 S'DF o (0, du, pu)=0. A5

6 e
Hilbert’s integrand for general relativity 18

L(g) = R(2) du(g)-
Here g isa metric on space-time, R(g) is the
scalar curvature an dp(g) the induced volume
form. The Euler-Lagrange equations are
Ricci(g) = 0.

This is now thought of a straightforward process
of taking a derivative in a function space, but

the old fashioned language clarifies the
geometry.
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For general relativity, the partials up through
order 2 are required, but for all but for most the
examples in this talk, it is sufficient to think of
L as a function on the derivatives of vector
valued functions f. By invariant, she does NOT
mean that the problem at hand is invariant, only
that the Lagrangian density L = Fdx is. (This
confused me when I was a student). In fact, L
need only be invariant up to a “divergence” or
an exact n form. Hence the theorem 1s local, not
global in nature, and applies as it was originally
stated, to locally Euclidean spaces, or
manifolds, irrespective of topology or boundary
conditions. The modifications needed when the
image of f is in a manifold are easily
encompassed in the theory, whether by using
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examples in this talk, it is sufficient to ) think of
L. as a function on the derivatives of vector
valued functions f. By invariant, she does NOT
mean that the problem at hand is invariant, only
that the Lagrangian density L = Fdx is. (This
confused me when I was a student). In fact, L
need only be invariant up to a “divergence” or
an exact n form. Hence the theorem is local, not
global in nature, and applies as it was originally
stated, to locally Euclidean spaces, or
manifolds, irrespective of topology or boundary
conditions. The modifications needed when the
image of f is in a manifold are easily
encompassed in the theory, whether by using
constraints and Lagrange multipliers or by using
local coordinates, and I will not discuss them.
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Noether’s theorem really uses “infinitesimal”
symmetries, or the action of the Lie algebra.
For practical purposes, a group action is far
easier to identify. Her symmetries involve
groups which act on both the domain x and the
range of f' as needed in general relativity. Our
examples use one or the other, meaning we will
not deal with the subtleties of her theorem.

A rough idea of her proof is more useful than
the proof. To each of the p symmetries, at the
function u where 81 vanishes, identify the
infinitesimal variations Su(b) of the function u
coming from the symmetry. Noether gives an
explicit formula for this in terme af variatinne
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not deal with the subtleties of her theorem

A rough idea of her proof is more useful than
the proof. To each of the p symmetries, at the
function u where 81 vanishes, identify the
infinitesimal variations Su(b) of the function u
coming from the symmetry. Noether gives an
explicit formula for this in terms of variations in
the domain and target, and to apply the theorem
in any given case, the first step is to compute
them. Multiply Su(b) by an arbitrary function
L(b) of small support. Compute the variation
or derivative of I (called § 1) in the direction

ib @ (b)Su(b).
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In general for any integral which depends only
on first derivatives this should look like

ST= ({2 [(V(b) deb)) + W(b)e(b)dx"
b
However, since Su(b) is an infinitesimal

symmetry of L =Fdx, W(b) = 0. But if §I = 0,
this means

0= {52 [V(b)-de (b)]
‘a b
for all {(b) with compact support. Integrate by

parts, and the “fundamental lemma of the
calculus of variations™ tells you that for each b

div V(b)= 1d.Vih) =0

Page 19/81
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ST= ({2 [(Vb) de(b)) + WeoTe(b)dx”
b

However, since Su(b) is an infinitesimal
symmetry of L =Fdx, W(b) = 0. But if §1=0,

this means
0= {5 [V(b)-de (b)]
a

for all Y(b) with compact support. Integrate by
parts, and the “fundamental lemma of the
calculus of variations” tells you that for each b

div V(b) = 1d.V{b) =0.
J
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From this it is not hard to guess how to handle
more derivatives, and see how part II works, In
part I, one knows &1 vanishes (upto a
divergence) for all f. If L = FdxX'is invariant
under f for all f. Then we do not need the
Euler-Lagrange equations to know

div V(b) =0.
[t hence is true for all f. Noether called these

conservation laws “improper”. For physicists,
they are true “off shell” as well as for solutions.

Page 21/81
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[1I. Some examples inn = 1

.Conservation of energy in one dimension is the
easiest example of part [ (we use x =t). Given
our simplification, every integral is of the form

[ = §F(t,f(1),f‘(t))dt

[+

The Euler-Lagrange equations are just the
equations, as many as the dimension of the
target

d/dt F‘a.‘ = F.Jk — 0

’
IfLT — Cifit+ £\ than TAt 10 ssnrvrariant rindar
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easiest example of part I (we use x =t). Given
our simplification, every integral is of the form

[ = §F(t,t‘(t),f‘(t))dt

[+ %

The Euler-Lagrange equations are just the
equations, as many as the dimension of the
target

d/dt th -Fa= 0.
If F = F(f(t), f‘(l)), then Fdt is invariant under
time translation. In one variable, div = d/dt.

An easy exercise 1s that it 1s a consequence of
the Euler-Lagrange equations that

Em) = 2 (F, u" -F
P ¥
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I = §F(t,f(t),f‘(t))dt

[+

The Euler-Lagrange equations are just the
equations, as many as the dimension of the
target

karenuhlenbeck

d/dt F‘.j.\ - K™ 0.

If F = F(f(t), F(t)), then Fdt is invariant under
time translation. In one variable, div = d/dt.
An easy exercise is that it is a consequence of
the Euler-Lagrange equations that

E(u) = Z (F,)u" -F
[ ¥

Fl
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While we are in n = 1, we might look at an
example of part II of the theorem. For a curve u
in a manifold, we may choose to minimize

length instead of energy. Then we have
-]

[= g 'f (t)‘gf,]t'
C
[t does not matter than the norm depends on f,
only that it not depend on t. Using the recipe
above, without restricting to u where |
vanishes we come out with the mundane
identity

E=(f/f|,f)-|f|=0.
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length instead of energy. Then we have

b3 [ ]

[= SH (t)\mc)lt.

G
[t does not matter than the norm depends on f,
only that it not depend on t. Using the recipe
above, without restricting to u where 1
vanishes we come out with the mundane
identity

E = (f/|f|,f)-|f|=0.

RS that this 1s because
Btd in the group of

The second theorem expll
the translations are emb
diffeomorphisms of t, a g\ which depends on
an arbitrary function on ti§&\tne, which leads to

an identity true for all cur inot just those that
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= 3 |f (t)] dt.

It does not matter than the norm depends on f,
only that it not depend on t. Using the recipe
above. without restricting to u where [

vanishes we come out with the mundane
identity

_IE[=18

The second theorem explains that this is because
the translations are embedded in the group of
diffeomorphisms of t, a group which depends on
an arbitrary function on the line, which leads to
an identity true for all curves, not just those that
solve the Euler Lagrange equations. In this

Page 27/81
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Noether’s theorem is quoted quite a bit in
Hamiltonian mechanics. This comes about from
the classical Legendre transformation between
the Lagrangian and Hamiltonian formulation of
mechanics.
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But why was this known to Noether’s
contemporaries as a conservation law? Simply
the divergence theorem. In our language, If g, ?
and g are two codimension 1 submanifolds S creck
bounding a domain {1
S P ge = J de =0
A A

L ' 2 <t
Notice that to this day it is usual to take 4, as

constant time slices in an evolution problem and
use the conserved quantity that the induced
surface intgral is constant on the time slices.

i

VUUIIDIIUU o 'PI'W!_EJ.I 11w

Hilbert functic w

Rianchi idﬁnfif\
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I'V. Coordinate Invariant Formulation

Suppose the domain variable is x in n
dimensions rather than 1 (We will work our way
down to 2 dimensions at the end). In part I,
Noether asserts that the finite dimensional
symmetries lead to vector fields V with div V
= 0. This looks impossibly coordinate
dependent. Not so. After all, the formulas for
the symmetries are coordinate dependent, but
the symmetries themselves are not, if we
incorporate the volume form dx into our
thinking. For all functions with compact
support, at critical points

= {{Vdede=0.
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We write Vadx =6 forBan n-1 T0Tm anv gt

Now use the fa hat this is the mathematical
definition that REE 0 as a distribution.

Bintcgrands of higher order
eresting. But our integrals
He we will not go into them.

are significant an
were of first orde

to Noether’s
arvation law? Simply
our language, It g,
wbmanifolds

!

But why was this K
contemporaries as 3
the divergence ther
and g are two cod
bounding a dor

(o

)
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We write Vadx =6 for©an n-1 form and get
o= “ Bad Y.

Now use the fact that this is the mathematical
definition thatd@=0as a distribution.

The difficulties for integrands of higher order
are significant and interesting. But our integrals
were of first order, so we will not go into them.

But why was this known to Noether’s
contemporaries as a conservation law? Simply
the divergence theorem. In our language, It 8,
and g are two codimension 1 submanifolds
bounding a domain £1

(B— (9 — ”da =0

Page 32/81



Pirsa: 22030111

are significant and interesting. But our integrals
were of first order, so we will not go into them.

But why was this known to Noether’s
contemporaries as a conservation law? Simply
the divergence theorem. In our language, If g,
and g are two codimension 1 submanifolds
bounding a domain 1

SB - gO - J ds =0
: A s i
Notice that to this day it is usual to take 4. as

constant time slices in an evolution problem and
use the conserved quantity that the induced
surface intgral ¥ an the time slices.
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V. The Reception: Then and Now

The Noether theorems accomplished two
things. They showed that many if not all of the
known conservation laws in both physics and
mathematics arose from symmetries. They also
solved the problem assigned to her. Many
energy conservation laws, such as those of
special relativity, come from translations in time
and those of momentum from translations in
space. In general relativity these translations are
embedded in the group of diffeomorphisms,
which leave the Einstein-Hilbert Lagrangian
invariant. Hence they give rise to identities, not
conservation laws. In 1921 Shouten and Struik
published a proof that her identities for the

oAU e e B TR

rirara amiixralant tn t'l'n,_'h
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The Noether theorems accompusieu twu
things. They showed that many if not all of the
known conservation laws in both physics and
mathematics arose from symmetries. They also
solved the problem assigned to her. Many
energy conservation laws, such as those of
special relativity, come from translations in time
and those of momentum from translations in
space. In general relativity these translations are
embedded in the group of diffeomorphisms,
which leave the Einstein-Hilbert Lagrangian
invariant. Hence they give rise to identities, not
conservation laws. In 1921 Shouten and Struik
published a proof that her identities for the
Hilbert functional were equivalent to the
Bianchi identities.
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How were the theorems received? For much of
this 1 rely entirely the reference by Kosmann-
Schwarzbach [K-S]. Some attention was paid to
them at first, with mention in correspondence
among Einstein, Hilbert, Klein and their
associates. Her work was referenced in talks
and papers in the next few years, but
surprisingly little attention was paid to them in
the ensuing years until the 1960’s. Kosmann-
Schwarzbach suggests two reasons.

i). The importance of the variational
formulation of problems in physics, and 1n
particular the value of the variational
formulation of Einstein’s equation, was in

o -
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among Einstein, Hilbert, Klein and their
associates. Her work was referenced in talks
and papers in the next few years, but
surprisingly little attention was paid to them in
the ensuing years until the 1960’s. Kosmann-
Schwarzbach suggests two reasons.

1). The importance of the variational
formulation of problems in physics, and in
particular the value of the variational
formulation of Einstein’s equation, was in
doubt.

i1) They did not seem to have applications.
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Several revolutions and developments in
physics and mathematics changed everything.

1) Group theory in quantum mechanics

This established group theory and symmetry as
a fundamental part of the mathematical
language physicists use. The group theory was
associated with classical field theory, which 1s
often presented in a Lagrangian formulation.

ii) Feynman path integrals

With the introduction of Feynman path integrals
in the development of quantum field theory,

T

o tnn and thair eritical noints hecame

Pirsa: 22030111

Page 38/81



This established group theory and symmetry as
a fundamental part of the mathematical
language physicists use. The group theory was
associated with classical field theory, which is
often presented in a Lagrangian formulation.

11) Feynman path integrals
With the introduction of Feynman path integrals
in the development of quantum field theory,
Lagrangians and their critical points became
suddenly central. Groups were already present.

1i1) Gauge theory

A Iittle bit later, when gauge theory arose in
describing fiindamental narticlac har dicacoine
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of groups modeled on arbitrary functions was
seen as a prophesy out of the past.

1v) Integrable systems

The classical theory of “completely integrable”
ordinary differential equations in Hamiltonian
mechanics found its way into the development
of infinite heirarchies of partial differential
equations.

v). Supersymmetry
The importance of these extended symmetries is

reflected in the equations that are generated by
them.
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1v) Integrable systems

The classical theory of “completely integrable™
ordinary differential equations in Hamiltonian
mechanics found its way into the development
of infinite heirarchies of partial differential
equations.

v). Supersymmetry
The importance of these extended symmetries is
reflected in the equations that are generated by
them.

vii) Applied mathematics

I know know about this only because | did a

Page 41/81



Pirsa: 22030111

OT INIINITE NEIrarcnics Ol partal uicicial
equations.

v). Supersymmetry

The importance of these extended symmetries is
reflected in the equations that are generated by
them.

vii) Applied mathematics

[ know know about this only because I did a

literature search on Math Sci Net. In looking
for ways to handle their equations, symmetry
seems to be in the top layer of their tool box.
See the basic reference by Peter Olver[O].
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The theorems were rediscovered many times,
sometimes independently and sometimes from
the papers themselves. In many of the new
developments, there is only a faint shadow of
the theorems themselves. But the association of
symmetry and conservation laws is now the
accepted philosophy in physics and
mathematics, an idea entirely due to Noether.
References to Noether’s theorem increase
exponentially in time.
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V1. Where Thurston fits in

Unlike the growing importance of the the

Noether theorems in physics and applied
mathematics, they are seldom quoted in the
literature of global or geometric analysis. SO
why and how could I be interested in them?

ago, my former student George
Daskalopoulos suggested we look into the
analytic underpinnings of Bill Thurston’s best
Lipschitz maps between hyperbolic surfaces. If
M and N are metric spaces, the Lipschitz
constant Lip(f) of a map f:M—>N is defined as

Two years

Lip(f) = max distance (f(x),f(y))/distance(X,y)-

£ ™
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literature Ol global Or ZEOIICU L allalyd1a. v
why and how could I be interested in them?

Two years ago, my former student George
Daskalopoulos suggested we look into the
analytic underpinnings of Bill Thurston’s best
Lipschitz maps between hyperbolic surfaces. If
M and N are metric spaces, the Lipschitz
constant Lip(f) of a map fM—>N 1s defined as

Lip(f) = max distance (f(x),f(y))/distance(x,y).
We seek to find u such that Lip(u) <= Lip(f)

for all maps f in some class which contains u.
There is a 1995 preprint of Bill Thurston that
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mathematics, they are seldom quoted 1n ine
literature of global or geometric analysis. So
why and how could I be interested in them?

Two years ago, my former student George Eemblcygeck
Daskalopoulos suggested we look into the
analytic underpinnings of Bill Thurston’s best
Lipschitz maps between hyperbolic surfaces. If
M and N are metric spaces, the Lipschitz
constant Lip(f) of a map :M—>N is defined as

Lip(f) = max distance (f(x),f(y))/distance(X,y).
We seek to find u such that Lip(u) <= Lip(f)

for all maps f in some class which contains u.
There is a 1995 preprint of Bill Thurston that
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proposes to base a Teichmuller theory on the
properties of these best Lipschitz maps between
hyperbolic surfaces. While the preprint is still
in circulation and familiar to topologists, we
were aware of no constructions tying this in
with modern analysis.

This is a minimization problem, Is it connected
with the calculus of variations? Yes, in the
sense that the problem can by approximated by
integrals and we are able to carry the conserved
quantities over into the limit to form transverse
measures. There is extensive literature in the
case of real valued functions in the form of
infinity harmonic functions. As a warm-up case
for the Thurston project, we were able to
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with the calculus of variations? Yes, in the
sense that the problem can by approximated by
integrals and we are able to carry the conserved
quantities over into the limit to form transverse
measures. There is extensive literature in the
case of real valued functions in the form of
infinity harmonic functions. As a warm-up case
for the Thurston project, we were able to
transfer this to the case of fM—> §' (or a real
line bundle). We study the variational integral

r
I(f) = EPE dff du on fM—>S" .
The norm of df is computed in the Riemannian
metric agd dp is the volume form induced by the
metric. | the place of boundary conditions, we
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class, The unique (up to rotatlon in the c1rc1e)
minimum u,solves the Euler-Lagrange equations

D*|dy/"" du,= 0

The results were very promising, especially
after we noticed that D = d on forms and the
one-forms

*dy T du, = =dy,

were closed with important properties. In
particular as p goes to infinity, the limits of v
were least gradient functions of bounded
variation which define a transverse measure so
important in Thurston’s work.
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When we went to tackle the problem of N a 3
hyperbolic manifold, we found the right e
integrals whose minima approached best
Lipschitz maps, but we did not know how to
find anything like the dv and the transverse
measure. We then remembered Noether.

In the case :M—>S?, the symmetry of the target
is the rotations, and without following her
recipe., we had found the closed one-form
corresponding to this symmetry

= *| dq]'-au,

With tL‘lformation we obtained from using
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When we went to tackle the problem of N a
hyperbolic manifold, we found the right
integrals whose minima approached best
Lipschitz maps, but we did not know how to
find anything like the dv and the transverse
measure. We then remembered Noether.

In the case f:M—>S", the symmetry of the target
is the rotations, and without following her
recipe., we had found the closed one-form
corresponding to this symmetry

dig = *|dy/"duy

With the information we obtained from using
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We found that some of the conserved quantities
satisfy dual variational problems of their own.
We fnd this duality intriquing, and it does not
seem to be in the literarure.

VII. Global Construction

The global nature of the general form of
Noether’s theorem is promising. 1 state it as a
conjecture, with the comment that, in any given
situation, it is easier to make the construction
from the proof of Noether’s theorem than to
prove the general conjecture and then figure out
how to apply it.

ARSI N N sk DA X ~ AT T v
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VIII. The Symmetries of the Domain

The symmetries of the Euclidean group on the
domain is the basis for classical concepts of
laws of conservation and momentum. Standard
textbooks show that for

L= F(1 df)d=

associated with every solution of the Euler-
[Lagrange equations 1s a svmmetric (enerev)
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dw wiv

VI The Symmetries of the [Domain

I'he symmetries of the [uclidean group on the
domain is the basis for classical concepts of
laws of conservation and momentum. Standard

textbooks show that for
vy N A
1 = F(f{,dl) dx;

associated with every solution of the Fuler-
Lagrange equations 1§ a symmulric (energy)
momentum tensor S = {5;; | with

-

karenuhlenbeck ;
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VIII. The Symmetries of the Domain

The symmetries of the Euclidean group on the
domain is the basis for classical concepts of
laws of conservation and momentum. Standard
textbooks show that for

L= F(f, df) dx’

associated wit
Lagrange equati
momentum tens

_ is a symmetric (energy)

d*

Somewhat 1wy Lagrangian

karenuhlenbeck *
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associated with every solution of the Euler-
Lagrange equations is a symmetric (energy)
momentum tensor S = {S;; } with

d*S =0.

Somewhat the same is true for any Lagrangian

L =F(f, Q(df)dpm

with domain a Riemannian manifold M. Here
the metric on M appears only in the volume
form and in the quadratic form

Page 58/81
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ntum tensor S, a
ociated to every &
e equations with Y i
karenuhlenbeck

In this case, there is a mo
section of T*(M)eT*(M)
solution of the Euler-Lag

D*S =0.
These equations abo

Consider the linear r
the Lie algebra of tk
M to the induced
infinitesimal symm

Proposition 2: If ¢
associated with a I

A X/Q Laf
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Consider the linear map from an element @ of
the Lie algebra of the local isometry group of

M to the induced vector field ww@ or
infinitesimal symmetry-

If wa)y is the vector field

Proposition 2:
h a local isometry and D*S = 0.

associated wit
d *(S,w (a ) =0.
,/"'—-’—.

to a global theorem

This can be packaged in
d n-1 form with values

identifying S with a close
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VIIL. The Symmetries of the Domain
The symmetries of the
domain is the basis for
laws of conservation
textbooks show th

Euclidean group on the
classical concepts of
and momentum Standard
at for

L= F(f, df) dx»

associated with eve
Lagrange equ

ry solution of (he Euler
ations is a symmetrin
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[et S* = **S be the symmetric matrix of
((n-1),(n-1)) forms. Forn=2 we get:

Theorem 3: On a locally symmetric surface M,
the equation D*S =0 1s valid if and only if there
is a function E on the covering space M~ such
that

g*=ydE+RgE

where W isthe covariant derivative, R 1s the
constant curvature and g is the metric tensor.
Mawanvar the kernel K of the operator
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((n-l),(n-l)) forms. Forn

Theorem 3: On a locally symmetric

the equation D*S = 0 is valid if and
is a function E on the covering space M~

that

=12 we get:

surface M,
only if there
such

g*=pdE+RgE

it derivative, R is the

s the metric tensor.
the operator

mctions E which are
al action of the

ect to the natural

where ¥ 1S the covarl
constant curvature and
Moreover, the kernel K

vd+Rg corresponds

the Hamiltonians for the

symmetry group G w

symplectic form O # 3 hyperbolic

surface, The kerne “sional space
s a basis.
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((n—l),(n—l)) forms. Forn= 2 we get:

Theorem 3: On a locally symmetric surface M,
the equation D*S =0 is valid if and only if there
is a function E on the covering space M-~ such

Si“:VdE+RgE

where ¥ 18 the covariant derivative, R is the
constant curvaturc and g is the metric tensor.
Moreover, the kernel K of the operator
vd+Rg corresponds tO functions E which are
the Hamiltonians for the local action of the
symmetry group G with respect to the natural
symplectic form on M. ForM a hyperbolic
surface, The kernel Kisa 3_dimensional space
7" ev2 1. +ha L. ag a basis.
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((n-1),(n-1)) forms. Forn =2 we get:

Theorem 3: On a locally symmetric surface M,
the equation D*S = 0 is valid if and only if there
15 a function E on the covering space M~ such
that

S*=UdE+RgE

where W 1s the covariant derivative, R is the
constant curvature and g is the metric tensor.
Moreover, the kernel K of the operator

Vv d + Rg corresponds to functions E which are
the Hamiltonians for the local action of the
symmetry group G with respect to the natural
symplectic form on M. For M a hyperbolic
surface, The kernel K is a 3-djmensional space
of functions on M = H? witl‘thp k. ac a hacic

)
karenuhlenbeck
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£ is a closed CUTLENEE '

>, Solve 8*=V nE=
E(X) in the cover '
We can check the
*E(X) = E(¥X),

k()= *E-
is in the kernel.|
Corollary 4: Let % ‘ . To
i 8 A s Ssed in

avery S* in T*({
\ respect to
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d curve in M, we liftto 2
E+ RgEasa solution & =
the variable X —> (X,5)-
E is a solution and

*E is also a solution,

1£¥ is a close
H>. Solve gx =Vd
E(X) in the cover In
We can check that if
*E(X) = E(¥X), then

k@)= *E-E

is in the ke
it M be a hyperbolic surface. To
DET*(M) which 1s closed in

cvmdtxToA0 \Uith reSDeCt tO

Corollary 4:
every S* 1n
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y>. Solve

P

gx = Vd EF RgE as a ove
the variable o (X.Y)-
a solution and

E(X) in the cover in
a solution,

We can check that ifE 18
*E(X) = E(¥X), then *E is also

k()= *E - E

is in the kernel.

Corollary 4: Let M be a hyperbolic surface. TO
i T*(M@T*(M) which 18 closed in
i es with respect 10
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B Solved™ — v - o

E(X) in the cover in the variable X —~ (X,Y)-
We can check that ifE 1sa solution and
*E(X) = E(¥X), then *[ is also a solution,

k(¥) = *E - E
is in the kernel.

Corollary 4: Let M be a hyperbolic surface. To
every S* 1n T*(MPI*(M) which is closed in
the sense of covariant derivatives with respect to
either index, we can associate

4 (M)f“> K

. B ) + k().

!
to construct an affine bundle.
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Noether’s theorem. I will give only one
example.

A. The Willmore Functional

[ was fortunate to find a recent paper by Yann
Bernard [B], who not only derives equations
from Noether’s formula, but also mentions
many of the examples 1 knew about. The
Willmore functional does not fall into the class
of problems | discussed, as the Lagrangian 1s of
second order. The Lagrangian in the parametric
approach 1s expressed in terms of a second
fundamental form of an immersion f:M—> R

[(5)= SS g dues .
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I1X. Found in the Literature

Many theorems in geometric analysis are very
general, but examples treating special cases are
often the first to be studied. In most, if not all of
the applications I am aware of, the identities
were first discovered without reference to
Noether’s theorem. I will give only one

example.

A. The Willmore Functional

[ was fortunate to find a recent paper by Yann
Bernard [B], who not only derives equations
from Noether’s formula, but also mentions
many of the examples I knew about. The
Willmore functional does not fall into the class

¥l 11 T e 1 _ al T d

o
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Noether’s theorem. I will give only one
example.

A. The Willmore Functional

[ was fortunate to find a recent paper by Yann
Bernard [B], who not only derives equations
from Noether’s formula, but also mentions
many of the examples I knew about. The
Wwillmore functional does not fall into the class
of problems I discussed, as the Lagrangian 1s of
second order. The Lagrangian in the parametric
approach is expressed in terms of a second

fundamental form of an immersion f: M—> R

[($)= 55 Hig duen .
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The problem is to find a minimum when M is
the torus. (1415 Known to Be e Clifford torus)

The reparameterizations form a symmetry
dependent on two functions of two variables,
and the Euclidean group acts on the target.
However, the special property of this integral is
that it is also invariant under dilations in R® )
implying that I is invariant under the full
conformal group of R®. The calculations needed
to carry out Noether’s program in this case are
considerably more difficult than any described
in this talk. The conservation laws obtained
from these symmetries had been discovered
without appealing to Noether by Riviere and
used in a his solution of the Willmore probler
(the first solution is due to Marques and Neve

karenuhlenbeck
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identities of Strominger obtain identiues
based on the conformal compactification of
space time. In fact, my own collaborator Chuu-
Lian Terng had heard Stromginger talk on this
and had found 1t something we should look at,
but we never got to it.

The calculations 1n the paper rely on the
moment map formulation of gauge
transformations and as sgfch fall into the
mathematical realm o ether’s theorem n
Hamiltonian mechani B

karenuhlenbeck
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B. My colleague Antonella Grassi heard an
earlier version of this talk, and pointed out to me
d very recent paper in physics using Noether’s
theorem. I hesitate to include it, because the
physics constructions need a lot of translation to
be understandable to a mathematician. The
paper is “A Shorter Path to Celestial Currents”
by Sabrina Pasterski. It derives the Ward
identities of Strominger to obtain identities
based on the conformal compactification of
space time. In fact, my own collaborator Chuy-
Lian Terng had heard Stromginger talk on this
and had found it something we should look at,
but we never got to it.
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be understandable to a mathematician. The
paper is “A Shorter Path to Celestial Currents”™
by Sabrina Pasterski. It derives the Ward
identities of Strominger to obtain identities
based on the conformal compactification of
space time. In fact, my own collaborator Chuu-
Lian Terng had heard Stromginger talk on this
and had found it something we should look at,
but we never got to it.

karenuhlenbeck

The calculations in the paper rely on the
moment map formulation of gauge
transformations and as such fall into the
mathematical realm of Noether’s theorem in
Hamiltonian mechanics.
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Have I convinced you that the Noether theorems
are still in the toolbox of many branches of
mathematics? And despite their age, are sti]
worth keeping dusted off on top?

Page 81/81
Pirsa: 22030111



