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About me

| am now a postdoc at the Center for Theoretical Physics, MIT.

| was at Microsoft Research Al working on natural language processing
(2018-2019).

| was a postdoc at the Institute for Quantum Information and Matter,

Caltech (2015-2018).

| received a PhD in condensed matter physics from UC Berkeley
(2010-2015). o,

My research interests include condensed matter and quantum information
theory.
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Entanglement in quantum many-body systems

O,

In the past 20 years, concepts of quantum information theory have been
widely used in condensed matter, statistical, and high-energy physics to
provide insights beyond those obtained via conventional quantities. In
particular, entanglement characterizes or is quantitatively related to critical
phenomena, topological order, quantum dynamics, and classical
simulability of quantum many-body systems.

We study the entanglement dynamics of quantum many-body systems at
long times.
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Abstract: upper bound

(I) For any geometrically local Hamiltonian on a lattice, starting from a
random product state the entanglement entropy (EE) is bounded away
from the maximum entropy at all times with high probability.

(I1) In a spin-glass model with random all-to-all interactions, starting from
any product state the average EE is bounded away from the maximum
entropy at all times.

We also extend these results to any unitary evolution with charge
conservation and to the Sachdev-Ye-Kitaev model.

Our results highlight the difference between the entanglement generated
by (chaotic) Hamiltonian dynamics and that of random states.
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Abstract: lower bound

In quantum many-body systems, a Hamiltonian is cglled an “extensive
entropy generator” if starting from a random product state the EE obeys a
volume law at long times with overwhelming probability. We prove that

(i) any Hamiltonian whose spectrum has non-degenerate gaps is an
extensive entropy generator;

(ii) in the space of (geometrically) local Hamiltonians, the non-degenerate
gap condition is satisfied almost everywhere.

These results imply “unbounded growth of entanglement” in many-body
localized systems [Bardarson et al., PRL 109, 017202 (2012)].
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Preliminaries

Let f,g: R™ — R™ be two functions. One writes

f(x) = O(g(x)) if and only if there exist constants M, xp > 0 such that
f(x) < Mg(x) for all x > xp;

= Q(g(x)) if and only if there exist constants M, xg > 0 such that
> Mg(x) for all x > xo;

f(
f(x
f(x) = ©(g(x)) if and only if there exist constants My, M>, xo > 0 such
that M1g(x) < f(x) < Mag(x) for all x > xp;

)=
)
X)
)
)=

In particular, “exponentially small in N is denoted by e~%(N).

Definition (entanglement entropy (EE))

The EE of a bipartite pure state pag is defined as the von Neumann
entropy of the reduced density matrix pa = trg pag:

S(pa) = —tr(paln pa).
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Deviation from maximum entropy [arXiv:2102.07584]

Definition (Haar-random product state

Consider a system of N spins. Let [V) = ):_; |V;) be a Haar-random
product state, where each |V;) is chosen independently and uniformly at
random with respect to the Haar measure.

A Haar-random product state is typically a “massive” superposition of
energy eigenstates.?

The time evolution under a chaotic local Hamiltonian is so complex that
heuristically, one might expect that the state at long times behaves like a
random state.

For chaotic (not necessarily geometrically) local Hamiltonians, starting
from a random product state the EE approaches that of a random state at
long times.

1Huang; & Harrow, arXiv:1907.13392.
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Page curve

Theorem (entanglement of random states. conjectured and partially
proved by Page (PRL 71, 1291, 1993); proved in (Foong & Kanno,
PRL, 1994; Sanchez-Rui, PRE, 1995; Sen, PRL, 1996))

For a bipartite pure state pag chosen uniformly at random with respect to
the Haar measure,

dy  0(1)
“odg T dady P

where da < dp are the local dimensions of subsystems A, B, respectively.

The distribution of S(pa) is highly concentrated around the mean
E

oas S(pa).? This is easily seen from the exact formula® for Var,,, S(pa).

Pirsa: 22030110

2Hayden et al., Commun. Math. Phys. 265, 95, (2006).

3Vivo et al., PRE 93, 052106 (2016); Wei, PRE 96, 022106 (2017).
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Geometrically local Hamiltonians

Consider a chain of N qubits governed by a local Hamiltonian
H'at — Z;Vﬂ H;, where H; acts on qubits at positions j and j + 1. (A
similar result holds for qudits in higher sp&tial dimensions.)

We do not assume translational invariance.

Let E 4=, denote averaging over all contiguous subsystems of size n.
There are N such subsystems.

Theorem

Initialize the system in a Haar-random product state |V). Let
pa(t) = trﬁ(e_"Hlatﬂ\U)(\IJ|e"Hlatt) be the reduced density matrix of
subsystem A at time t. For n > 1,

|\

Pr (sup E S(pa(t)) =nIn2— Q(n/N)) >1-4, (3)

teR |Al=n

where 6 > 0 is an arbitrarily small constant.

Yichen Huang (MIT) Entanglement dynamics at long times

Pirsa: 22030110 Page 10/26



Unitary evolution with charge conservation

Consider a system of N qubits without an underlying lattice structure.

Let m. n be positive integers such that mn is a multl%le of N. Let

_ ,A,, be m possibly overlapping subsystems, each of which has
exactly n qubits. Suppose that each qubit in the system is in exactly
mn/N out of these m subsystems.

Let o= = Zjvzl of be the total charge operator and U(t) be a unitary

time evolution operator such that [U(t),0?] = 0.

For example, U(t) can be the time evolution operator of the SY model* or
of a quantum circuit with charge conservation.®

*Sachdev & Ye, PRL 70, 3339 (1993).
>Khemani et al., PRX 8, 031057 (2018); Rakovszky et al., PRX 8, 031058 (2018).
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Unitary evolution with charge conservation

Theorem

Initialize the system in a Haar-random product state |V). Let

pa;(t) = trg (U(1)| W) (W] UT(t))

be the reduced density matrix of subsystem A; at time t. Then,

1

Pr | sup — S(pa.(t)) =nIn2 — Q(n/N >1-—4,
7 |2 X Soa () = ning = o/ | 21—

where & > 0 an arbitrarily small constant.
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Spin-glass model

Consider a system of NN qubits. Let

. (01 v lOF —
W=kl Bl Tk o

be the Pauli matrices for the qubit at site j.

Letid = {ijfm}i’gmji{;gf\f} be a collection of 9N(N — 1)/2 independent

standard normal random variables. The Hamiltonian of the spin-glass

model is

HE= Y. D Jumoigh (7)

1<j<k<N I,me{x.y,z}

Let £ 4=, denote averaging over all subsystems of size n. There are (f)
such subsystems.
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Spin-glass model

Theorem

Initialize the system in an arbitrary (deterministic) product state

/ N
V) = @iy [¥)). Let

__ L8 . .y ISE
p1.a(ts) = tra(e MO ) (] e0)

be the reduced density matrix of subsystem A at time t;. Forn > 1,

Esup E S(psa(ts)) =nln2—Q(n*/N?).
J t,eR |Al=n
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SYK model

Consider a system of NN Majorana fermions y1. x> XN, Where N is an

even number.

b i

Let K := {Kjkim}1<j<k<I<m<n be a collection of (‘2’) independent
standard normal random variables. The Hamiltonian of the SYK model is®

A= N Kitam XXX Xm, - X)) Xk} = 205 (10)
1<j<k<l<m<N *

Let ;41— denote averaging over all subsystems of size n (even). There
are (':‘:) such subsystems.

®Kiteav 2015; Maldacena & Stanford, PRD 94, 106002 (2016):
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Random product states in fermionic systems

In fermionic systems, defining a Haar-random product state is tricky.

Since the Hamiltonian conserves fermion parity, the Hilbert space is split
into an even sector and an odd sector, which do not interact with each
other. It is controversial whether to allow the superposition of.states from
both sectors.

While being compatible with the axioms of quantum mechanics, such a
superposition is widely believed to be unphysical. On the other hand, it is
not clear how to define a Haar-random product state with definite fermion

parity.

The statement of our theorem avoids the controversy and related technical
difficulties by introducing the condition (11) instead of claiming |¢’) to be
a Haar-random product state.
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SYK model

Theorem

Initialize the system in a state |¢') such that a constant fractio% of the
expectation values {{1|xjXkX1Xm|) }1<j<k<i<m<n are non-vanishing, i.e.,

{U, ki 1, m) = [(@]xixaxixm| )| = ©(1)} = ©(N*). (11)

Let

prc A(ti) = trz(e” MR ) (1] oMt ) (12)

be the reduced density matrix of subsystem A at time tx. For n > 4,

nin?2
Esup E S(pka(tk)) = —Q(n*/N*). (13)
K tk ER |A|:n 2
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Extensive entropy [arXiv:2104.02053]

In textbooks, we learned that entropy is an extensive quantity:
Initializing a system in a low entropy state, generically (although

not always) the entropy will grow gith time and eventually become
proportional to the system size.

To observe non-trivial entropy dynamics in the unitary evolution of a pure
state, we divide the system into two parts A (small) and B (large).

We view B as a bath of A and consider the entropy of A.

Extensive subsystem entropy is also known as a volume law for
entanglement.

The most general unentangled state with zero entropy for all subsystems is
a random product state.
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Localized systems
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Time evolution and saturation of EE from random product states under
the Hamiltonian’

H=J, Z(af‘aﬁl —|—af0{+l) ""thafz ""Jzzgizginrl- (14)
i ] i

O,

"Bardarson et al., PRL 2012. For heuristic explanations of the numerical results, see
Vosk & Altman, PRL 2013; Serbyn et al., PRL 2013; Huse et al.,,PRB-2014-:
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Spectrum

Definition (non-degenerate spectrum)

The spectrum of a Hamiltonian issnon-degenerate if all eigenvalues are
distinct.

Definition (non-degenerate gaps)

The spectrum {E;} of a Hamiltonian has non-degenerate gaps if the
differences {E; — Ei }j 1« are all distinct, i.e., for any j # k,

E— Ex=E —Eo = (j=J') and (k = k). (15)

4

By definition, the non-degenerate gap condition implies that the spectrum
is non-degenerate.
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Setting and quantum revival

Consider a system of N spins or qudits with local dimension d.

Let m. n be positive integers such that mn is a multiple of the system size
N. Let A1, Ay, ..., A, be m possibly overlapping subsystems, each of
which consists of exactly n <@/N/2 spins. Suppose that each spin in the
system is in exactly mn/N out of these m subsystems.

Initialize the system in a Haar-random product state |W). Let

pa;(t) = trgj(e_"Ht|\U)(W|e"Hf) be the reduced density matrix of
subsystem A; at time t.

| Theorem (Quantum recurrence theorem (Bocchieri & Loinger, 1957))

Any finite quantum system will, after a sufficiently long but finite time,
return to a state arbitrarily close to the initial state.

For any t’ > 0, there exists t > t’ such that entanglement at time t is
arbitrarily close to 0. We can only prove a volume law at most t € R.
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Volume law

Theorem

(1—€)NIn % . . .
Let n < sing . Where € > 0 is an arbitrarily small constant. For any

Hamiltonian H whose spectrum has non-degenerate gaps,

There is no underlying lattice in the statement of this theorem. In
quantum lattice systems,

Pr ( Pr ( E S(pa(t)) = Q(n)) = - e_Q(N)) S et A

W \teR \ |A|=n

for any n < N/2, where |4, denotes averaging over all contiguous
subsystems of size n (there are N such subsystems).
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Non-degenerate gaps

Define an ensemble of Hamiltonians

ke{x,y,z} kJE{x,y,z}) c [_1. 1]><(12N—9).

. k ki
a = (051N o 1<

N €&, N-1
H(e) = Z Z 60 Z Z oflofaj;.

Jj=1 ke{x,y,z} i=1 k,Je{xy,z}

The set of all « such that the spectrum of H(«) has degenerate gaps is of

measure zero.

Similar results can be proved in a similar way for other types of systems
including qudit systems with short-range interactions in higher spatial
dimensions or even with non-local interactions.
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Many-body localization

Corollary

The set of all a such that the spectrum of the Imbrie model

N

H'™e(q) = Z()\a a; + ajof +Zazz i (20)

=

has degenerate gaps is of measure zero, where A\ > 0 is a small constant.

Corollary
The set of all « such that the spectrum of the perturbed XX model

N—1
H% (o Z(hxoexcrerh )+Z(0 0j4110; Jj+1+hzzazzazof+1)
j=1
(21)
has degenerate gaps is of measure zero, where hy, h,, > 0 are small
constants.

Yichen Huang (MIT) Entanglement dynamics at long times

Pirsa: 22030110 Page 24/26



Volume-law coefficient is tight

Consider a chain of N qudits.

Let sz be the z component of the spin operator at position j. Let

non-degenerate. Let H™P! := Hloc 4 AH, where AH is an infinitesimal
random local perturbation.

The spectrum of H™®! almost surely has non-degenerate gaps.
Theorem

Initialize the system in a Haar-random product state |V). Let
pa(t) == trz(e= ™t W) (W|e™t) be the reduced density matrix of
subsystem A at time t. For any A,

E lim

WVar—+4oo T
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Summary

We study the entanglement dynamics of quantum many-body systems at
long times and prove the following: (1) For any geometrically local
Hamiltonian on a lattice, starting from a random product state the EE is
bounded away from tha maximum entropy at all times with high
probability. (II) In a spin-glass model with random all-to-all interactions,
starting from any product state the average EE is bounded away from the
maximum entropy at all times. We also extend these results to any unitary
evolution with charge conservation and to the Sachdev-Ye-Kitaev model.

We say that a Hamiltonian is an “extensive entropy generator” if starting
from a random product state the EE obeys a volume law at long times
with overwhelming probability. We prove that (i) any Hamiltonian whose
spectrum has non-degenerate gaps is an extensive entropy generator; (ii)
in the space of (geometrically) local Hamiltonians, the non-degenerate gap
condition is satisfied almost everywhere. These results imply “unbounded
growth of entanglement” in many-body localized systems [Bardarson et
al., PRL 109, 017202 (2012)].
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