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Abstract: LIGO and Virgo have observed over 80 gravitational-wave sources to date, including mergers between black holes, neutron stars, and
mixed neutron star- black holes. The origin of these merging neutron stars and black holes -- the most extreme objects in our Universe -- remains a
mystery, with implications for stars, galaxies and cosmology. | will review the latest LIGO-Virgo discoveries and discuss some recent astrophysical
lessons, including mass gaps, black hole evolution with cosmic time, and implications for cosmology. While the latest gravitationa-wave
observations have answered a number of longstanding questions, they have also unlocked new puzzles. | will conclude by discussing what we can
expect to learn from future gravitational-wave and multi-messenger discoveries.
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When two black holes coalesce, they source loud gravitational waves
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When two black holes coalesce, they source loud gravitational waves
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Gravitational waves stretch and squeeze matter
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Gravitational Wave Signal from a Coalescence of 'Two Black Holes
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Gravitational Wave Signal from a Merger of Two Black Holes:
Time-frequency Chirp
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Gravitational-wave observatories

o e TR W
; - Y 11' i h&
N[ Aty il
VAR 1%( '.Jf

LIGO Livingston

Pirsa: 22030107 Page 10/48



-
L] Ll
...0-.-.0‘..

Pirsa: 22030107 Page 11/48



A compact binary coalescence emits loud
gravitational waves

«.that stretch and squeeze matter

...and can be detected as a relative
change in distance (strain) by
interferometers
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Gravitational-Wave Transient Catalog
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Gravitational-Wave Transient Catalog
Detections from 2015-2020 ot compact binaries with black holes & neutron ‘i}.l1"i
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How are black holes made?
Compact object remnants of massive stars

star
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How are binary black holes made?

Figure credit: Shanika Galaudage
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How are binary black holes made?
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Figure credit: Shanika Galaudage
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The origins of LIGO-Virgo’s black holes

What were their progenitors? (For this talk, | am assuming massive stars)

When and where did these massive stars live?

How did these stars die?

How did these stellar remnants pair up into merger partners?

How did the resulting mergers affect their environments?

All of these pieces affect the observable properties of
gravitational-wave events
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Observing Binary Black Holes

How bigis each black hole? How fast are they spinning?

I Where are the spin axes pointing?
Where and when did they merge?

How are black holes
made?
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Masses in the Stellar Graveyard
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From Single Events to a Population

* Introduce a population model that
describes thé distributions of masses,

. . 1
spins, redshifts across multiple events. 5

* Example: Fit a power law to black

hole masses. g

* Population parameters: power-law
slope, minimum black hole mass, 10°
maximum black hole mass. Minimum mass 4tp

| . Maximum mass &p
* Take into account measurement 0 10 20 30 40 50 60
uncertainty and selection effects. Black hole mass
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Example of selection effects:

Big black holes are louder than small black holes
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Astrophysical lessons in this talk

1. Gaps in the mass distribution
2. Evolution with cosmic time

3. Applications to cosmology
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Astrophysical lessons in this talk

1. Gaps in the mass distribution

#A. Upper Black Hole Mass Gap

B. Lower Neutron Star Mass Gap
2. Evolution with cosmic time

3. Applications to cosmology
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Big black holes are very loud,
and yet among the first 10, we
did not see any binary black
holes with component masses
above ~40 solar masses (total
masses above ~80 solar masses)

—» These systems must be rare in
the underlying population.

MF & Holz 2017 ApJL 851 L2§
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With the first 10 binary black holes, we measured the
maximum black hole mass to be ~40 solar masses

The black hole masses were consistent with a truncated power law distribution

Merger rate
density
[Gpe™yr- ! M-

10 ]
L 10 ] 50 a0

Primary black hole mass (M, |
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Is 40 solar masses the lower edge of the pair-instability gap?

« (Pulsational) pair-instability supernovae
predict an absence of black holes in the range

~ 40 — 120 M,,
« Applies to black holes formed from stellar 10t 4 Q

10?

Palr-instabllity supernova

‘]

e

collapse

« Uncertainties in theorized gap location due
to: nuclear reaction rates, stellar structure,
possible beyond-standard model physics

Merger rate density
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« Black holes formed via other channels — for
example, from smaller black holes — may : | &1
10~ - : o L, :
populate the gap 10 20 30 40 50 60

Primary black hole mass (M)

Image credit: Geminl Observatory/NSF/AURA/ lllustration by Joy Pollard
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Are LIGO’s Black Holes Made From Smaller Black Holes?

4.5 ! ! . 1
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Also see recent Nature Astronomy review by Gerosa & MF 23
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Black holes in the mass gap? The case of GW190521

The New 1)ork Times

OUT THERE

These Black Holes Shouldn't Exist,
but There They Are

On the far side of the universe, a collision of dark giants sheds
light on an invisible process of cosmic growth.

NEWS « 0? SFPTFMBFR 2020

‘It'smindboggling!": astronomers detect
most powerful black-hole collision yet

Gravitational-wave detections suggest merging black holes fell into ‘forbidden’
range of masses.

LVK PRL 125, 101102 24
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In addition to GW190521, there are other recently-discovered big black holes

0.4 1+t GW190602.176027 wem GWTC-1-
-== GW190521 - GWTC-2
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Maximum mass measured with the second catalog, assuming a Truncated power law model

90

80 100

Mmax [M G)]

Maximum mass measured with the first catalog

Maximum mass measurement with the second caralog, excluding the most massive event

LVK 2021 ApJL 913 L7 (chaired by MF) 25
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A population of big black holes, but a feature at ~40 solar masses persists

Are these big black holes inside the mass
gap? (Made in a different formation channel
that contaminates the gap, like hierarchical

mergers?)

Is the lower edge of the gap represented by
a gradual tapering-off, rather than a sharp
cutoff? (Fallback of the hydrogen envelope,

stellar mergers, accretion)

Does the mass gap start at higher core
masses than previously thought? (Different

nuclear reaction rates, new physics?)

LVK 2021 ApJL. 913 L7 (chaired by MF)
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Astrophysical lessons in this talk

1. Gaps in the mass distribution
A. Upper Black Hole Mass Gap
B. Lower Neutron Star Mass Gap

* Evolution with cosmic time

3. Applications to cosmology
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Comparing merger rate evolution to star formation + time delays

Redshift z

0 0.25 0.5 1 2 4 8
= GWTC2 | | "~ | Blue: Inference of the black
—— Madau-Fragos SFR | hole merger rate as a
10" twin = 10 Myr function of cosmic time

[ | c— Lnin = 100 My‘
o b mm =3 G

=)

0 2 1 6 10 12
Lookback time tL (Gyr)

Solid lines: Predicted
merger rate evolution from
different time delay
distributions

R(tr)/R(0)

10"

MF, Farr & Holz 2018 ApJL 863 L41
MF & Kalogera 2021, ApJL 914 L30

28

Pirsa: 22030107 Page 33/48



The delay time distribution tells us about the formation channel
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Next generation
gravitational-wave
detectors

Mapping the black hole merger rate
across all of cosmic time, from the
very first black holes

Evans et al., Cosmic Explorer Horizon Study, arXiv:zniog.og882
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Using host galaxy properties to infer time delays
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Astrophysical lessons in this talk

1. Gaps in the mass distribution
A. Upper Black Hole Mass Gap
B. Lower Neutron Star Mass Gap

2. Evolution with cosmic time

# Applications to cosmology
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The black hole mass gap as a cosmological probe

Standard Sirens: Binary coalescences provide a direct measurement of the luminosity
distance (Schutz 1980)...

frequency position and orientation

GW ntraln

_.!/%me(t)zn \//
h( / F(an gles)cos(tbét))

phase

redshifted chirp mass "™ luminosity distance

/5
M, = ( %fr"‘“ (fy) " f‘(r))

...and the redshifted (detector-frame) MAaSSECS.  Sce Standard Siren chapter by MF in “Unveiling the Universe with
Emerging Cosmological Probes,” submitted to Living Reviews in
Relativity

43
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The black hole mass gap as a cosmological probe

Standard Sirens: Binary coalescences provide a direct measurement of the luminosity
distance (Schutz 1980)...

frequency position and orientation

GW ntraln
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...and the redshifted (detector-framc) MAaSSECS.  Sce Standard Siren chapter by MF in “Unveiling the Universe with
Emerging Cosmological Probes,” submitted to Living Reviews in
Relativity
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Goal: measure the redshift—distance relation

1.44 And thereby infer
. cosmological parameters
1.0

&

£0.8+

EOﬁ- dz'

I),-r‘.l-}-:‘:/ -
L=l ) '@

\ Depends on constituents of the

Universe: matter density, dark energy
density, dark energy equation of state

T T T T T T
0 2 4 6 8 10

luminosity distance (Gpc)
\

Local slope is the Hubble constant
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GW170817: A standard siren with an electromagnetic counterpart

7000
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Redshift from host
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Figure Credit: Will Farr/ LICO Scientific Collaboration

Pirsa: 22030107 Page 41/48



Simultaneously

infer source
populationand .,

redshift—distance

redshift—distance

relation
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Source-frame mass distribution
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Farr, MF, Ye & Holz ApJL. 883 .42 (2019)
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Application of mass distribution cosmology to GWTC-3

0.05
Broken Power Law
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LVK 2021, arXiv:2111.03604 (Paper Writing Team includes MF)
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Christine Ye
(astlake High School) 0.08
Standard Sirens at Cosmic Noon: .. |

l.everage external knowledge of the
merger rate as a function of redshift
to derive cosmological information
from the peak in the gravitational-
wave distance distribution

Density

0.02

0.00

Ye & MF 2021, PRD) 104, 043507
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Cosmology with the redshift peak of the merger rate,
measured by next-generation detectors
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Simultaneously .
infer source
populationand .,

redshift—distance
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Christine Ye
(LLastlake High School) 0.08
Standard Sirens at Cosmic Noon: ... |

1

Leverage external knowledge of the -
merger rate as a function of redshift
to derive cosmological information
from the peak in the gravitational-
wave distance distribution

Dens
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Ye & MF 2021, PRD) 104, 043507
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Cosmology with the redshift peak of the merger rate,
measured by next-generation detectors
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Learning from gravitational-wave populations

* How are black holes and neutron stars made?
* Where is the pair-instability mass gap?
* [s there a mass gap between neutron stars and black holes?
* What are the natal spins of neutron stars and black holes?
* How do neutron stars and black holes find merger partners?
* Where and when do black holes and neutron stars merge?
* How does the population evolve across cosmic time?
* Does their progenitor formation rate track the (low-metallicity?) star formation rate?
* Synergy with observing the host galaxies of gravitational-wave sources
* What are the cosmological implications of gravitational-wave sources?
* Standard sirens may help arbitrate the Hubble constant tension
* Probe dark energy via background expansion and modified gravitational-wave propagation
* Measure the three-dimensional clustering of sources, gravitational-wave lensing

30
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Looking ahead: a multi-messenger effort

o S Moaore, Cole & Berry 2014
* Preparing for future gravitational-wave detectors: .
Cosmic Explorer, Einstein Telescope, and LISA i o
* L] 5
g LL] [‘ QWINd 14 .
* Discovering electromagnetic counterparts, host . \‘b;
galaxies, and redshifts ol
* Understanding how black holes in gravitational-wave
sources fit in with the broader population of stellar-
mass black holes
:' Fishbach & Kalogera 2021
* Placing gravitational-wave sources in the cosmological - wil
context of the Hubble expansion, structure growth, and &
cosmic chemistry Y |- oom
40 0

e '
LIXL 0.4
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