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Abstract: Since the advent of holography, alot of progress has been made in our understanding of quantum gravity in AdS. However less is known
of its flat space counterpart, even though quantum gravity was certainly first formulated in flat space. Various programs have emerged since, like
Celestial Holography or Carrollian Holography, both formulated in four and higher dimensions which is the closest to reality but makes the
computation of highly quantum quantities difficult. I will present a 2d model of flat space gravity in which these difficulties can be tackled. This
model is dubbed the "Cangemi -- Jackiw model" after the authors of arXiv:9203056. It is a model of flat space gravity that can be reformulated in
terms of a boundary action whose solutions are Rindler patches. | will explain how this "boundary graviton" reformulation gives access to fully
guantum Euclidean results. In particular we will compute the exact spectrum of the Bondi Hamiltonian and show that it can be non-perturbatively
completed by amatrix model. | will also comment on scrambling in flat space.

Based on "From black holes to baby universes in CGHS gravity" with Victor Godet (https.//arxiv.org/abs/2103.13422) and an upcoming paper with
Arjun Kar, Lampros Lamprou and Felipe Rosso.

Zoom Link: https://pitp.zoom.us/j/95709808325?pwd=QV dFUFZi THVVMWIDb211U3kxQ0ZkZz09
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Based on arxiv: 2005.08999 with V. Godet

\ T . . : and upcoming paper with
A CClCSllzll Ma[rlx M()d Cl A Kar, L. Lamprou and F. Rosso
Perimeter Institute seminar
March 1st 2022

Charles Marteau, University of British Columbia
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Introduction: Low-dimensional gravity

Simple models of quantum gravity.
Breaking of the Virasoro symmetry — JT gravity. [Maldacena, Stanford, Yang][Jensen
Simplest non trivial gravitational theory in bulk dimension 1) = 2.

Exact gravitational path integral, including all topologies: duality with ensemble. [Saad, Shenker,
Stanford)

Non perturbative observables: partition function, correlators of local operators.

Chaos: carly time (scrambling, 1 ~ log §) and late time (eigenvalue repulsion, 1 ~ ed).
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Introduction: Flat gravity

Asymptotically flat gravity: BMS group. [Bondi, Metzner, Sachs]
Vacuum degeneracy: soft modes. IV

Vacuum transition: memory effect.

Perturbative quantum gravity: Weinberg’s soft theorems.
More recently: Celestial holography. [Strominger & all

Could provide non-perturbative definition of gravity S-matrix.

Asymptotic symmetry < Operator (Ward identity).

Bondi Hamiltonian generates time evolution on Scri.
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Introduction: Today

Mix both appmm‘hus to learn about non-pertu rbative aspects of a celestial operator: the Bondi
Hamiltonian.

1
Our model: Cangemi-Jackiw gravity, 2d model of flat space pure gravity.
Possesses co-dimensional symmetry, a 2d version of BMS.
Like in J'T, dynamics controlled by symmetry breaking,.
No bulk gravitons, only boundary soft modes.
Allow for exact computation of Euclidean path integral.
Non-perturbative completion by Matrix Model.

Gives access to non-perturbative spectral properties of the Bondi Hamiltonian (late time chaos?).

Study of scrambling (early time chaos?)
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Preliminaries: Minkowski and Rindler

Global Minkowski: ds? = — dU? — 2dUdR.

: ; anr. .
Rindler: ds< = - : du” = 2dudr.

27
Acceleration: @ = —.

Boost symmetry: u — u+ cst, r—r.

Boost = Rindler’s Bondi Hamiltonian.

B=H*=9,
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Ilat Jackiw—"Teitelboim gravity

+ Einstein-Hilbert: topological.

~ Simplest dilaton gravity: "d“‘.\‘\/E((/JR -2A).

» Related to CGHS without matter by Weyl rescaling,.
» EOM: R=0, V,V®=pg [10=g A.

Suv

il . . PAr

. Solution on thermal Rindler (disk): ¢ = g + O(1).
2n

. Dirichlet: ¢p ~ ¢, r — temperature is fixed! f} =

2n ¢,
.

» Non-trivial Z(f) : make A dynamical.

- Integrate in a gauge field to ensure A constant on-shell.
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A theory of Rindler wedges

+ Most general solution on Minkowski:

A
P = -fz- (U+cotT )(V+cotT,)+¢,.

¢ Four integration constants.

P,

. Impose boundary conditions: ¢, = —.
¢

+ Allows to locate boundary.
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heory of Rindler wedgees
A theory of Rindl dg

Most general solution on Minkowski:

A
P = = (U4 cotT )(V+cotT,)+ ¢, .

Four integration constants.

P,

. Impose boundary conditions: ¢, =
(

Allows to locate boundary.
+ Solutions = pair of Rindler wedges.

T..7T :location of bifurcation horizon.

' '
¢,,: horizon value of dilation.

A: acceleration of the bounda ry.

Pirsa: 22030092 Page 10/26



A theory of boundary gravitons

* We look for off-shell configurations.
» R = 0 is a constraint. |

All configurations are related by (large gauge) diffeo.

Preserve Bondi gauge:

|
U=fu). R=—r+g . o,
J(u) .,,(”)(f g'(u)) &

Infinite-dimensional group: BMS,. (Virasoro in AdS)

f.

s

Apply diffeo to general solution, impose boundary conditions.

- Obtain two EOMs:

v’ " i

s 0 il
L1 :

N . :0'
) i

b i
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A theory of boundary gravitons

* We look for off-shell configurations.
» R = 0is aconstraint. |

All configurations are related by (large gauge) diffeo.

Preserve Bondi gauge:

|
U=flu), R=——(r+g’ . ¢y
J(u) ./’(u)(' g'(u)) il

Infinite-dimensional group: BMS,. (Virasoro in AdS)

f.

s

Apply diffeo to general solution, impose boundary conditions.

+ Obtain two EOMs:

W . mn
tL; (.L,‘: ek 0
., e .

ey
-+
'f 7

&
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A theory of boundary gravitons

These two EOMs are rvprmiun'd hy hnundnry achion:

. l l ) '! Y/
d . £ :

Equivalent of the Schwarzian.
- Coadjoint action of BMS,,.
Invariant under ISO(2) X R.
Controls symmetry breaking BMS, — ISO(2) X R.
(f, g) Goldtone modes.

Bulk term vanishes on this configuration space.
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lluchdean path integral: the Bondi Hamiltonian

Boundary action reformulation allows for exact computations.
* Which observable can we compute in flat space?

Use AdS/CFT prcscriptinn to compute observables: set up bmmdary path integral and fill it

with bulk. Bulk

cvemazn () = (D + (D) +

* We trust this prescription: analytically continue boundary time.

u=Iit Q> - Tl'e-ﬂu*' - Z+(/})

o (D =metaz

2 different analytic continuations

Pirsa: 22030092 Page 14/26



Disk and Cylinders

Boundary modes  One path integral for each boundary

Path integral reduces to boundary: T /’

“grav

Z = [D(/)l)gl)/\l)/\ arlamlormly o Z' DfDg e~/ 4]

AN

(R=0) &F=1) Measures Eulery Vanishes if R=0and I = | S~
Disk: no modulus
Only 2 allowed geometries with 1 boundary : disk and half-cylinder.

+ f, g Goldstone modes belong to Diff(S") X C*(S")/1SO(2) X R.

Coadjoint orbit method, Unc-luup exact!

s )SH l (,:‘
' Zthsk 1Y~ -t IR} % ,S],b" Zhulf—cyl }’ By W
L (/) —/3" pE) ~ € (3, b) 5 ¢

Half-wormhole: circumference b
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Non-perturbative completion

Negativities are cured hy nnn-purturbulivu corrections:

f] S(l

S 50 ’ , l 30 - - )
(Z,(]) = Iz +0(e™), (Z(PDZ.((2))conn. = [+ f +0(™), (Z(B) ... Z,(f))conn. =0+ O(e™).
i | 2

AR \

Gravily Matrix Model Non gaussian thanks to corrections
4+ ro(A)

» Corrections are generated by Matrix Model.

- Consider double scaled, double cut MM, f\ /-\
& R

- ] ; " il
., measure: dM ¢~ N'"™VM) - yM) = - M L ZM4' M~< Hermitian.
G I 66

* Central result: make the following identificatio 7 (R) = - p=BM*+p?)
Central result: make the following identification L44_([3) p— (]pTl ¢

—80
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Non-perturbative completion

Negativities are cured hy nnn-purturbutivu corrections:

usn
S0

¢ l Sty - - ' X)
ZB)) = 23 + O™, (ZAOZBeonn. = 5=+ O™, (Z(B)- - Ze(f))comn, = 0+ O(e™).
¥ | 2

AR \

Gravily Matrix Model Non gaussian thanks to corrections
4+ ro(A)

¢ Corrections are generated by Matrix Model.

+ Consider double scaled, double cut MM, ( \% 5o / \

/

il iy

i G
. measure: dM ¢~ N"™VM)  yiM) = - M? + ZM4' M? Hermitian.
_—ﬂ

* Central result: make the following identificati 7 (B) = - o~ PM*+p?)
Central result: make the following identification |¢+(ﬂ) = del ¢

! -0
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Non-perturbative completion P =

Correlators reproduce perturbative (in {.'7&“) QG results.

M M . Y M ' '
Hamiltonian: M* + P, contains discrete and continuous part.

+ Continuous part: free 1d particle (density of state l/\/E), same for all M, not sensitive to the

ﬂVOfﬂgll‘g. Cangemi—Jackiw
Jackiw — Teitelboim

Free particle blurs spectrum:  ——

Origin of continuous part mysterious.

Feature of flat space? (infinite volume)

Non-perturbative density of states.
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(I[)Tl' e M +p?)

ooy L -
Non-perturbative completion: Results EiIZﬁL(ﬁ) = [

0
NP density of state: average density of state is
approx. linear.

Small oscillations, period e~

Signature of chaos in the spectrum? Diagnosed
by behaviour of spectral form factor (SFF).

MM: Sy (B, 1) = (Tre (BHIDM Ty o =(P=iDM”y
CJ gravity: S(f,0) = (Z (f+i)Z,(f = i1)).

Continuous component erases ramp and
plateau.

No eigenvalue repulsion, no discreteness.
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Scrambling in CJ gravity

Measure how fast a system forgets initial state.

Diagnosed with OTOC.

Problem: no holographic dictionary in flat space.

In AdS, extrapolate dictionary: (O(x,)O(x,)) ~ e M%) for heavy fields.
We will assume this formula can be imported.

To compute OTOC, need to couple theory to matter.

Simplified by mapping to charged particle.
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Scrambling: boundary particle

EOMs of the boundary action reproduced by those of charged particle in constant electric field:

- !
‘ e + g'(ar)
art

\
, implies a — ().

; /
Acceleration; a4 =
2,/¢ 0

¢ Other boundary: opposile charge.

* Relative placement: Poincaré symmetry is gauged, ask total charge to vanish.

‘[ ’ | CI i
o b ik i 7A’).

Plemx+gAl, MW" = X'(PY
P4+ Py=0, M, +M=0.

rage 19 of 23
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Scrambling: coupling to matter

Diagnose Left/Right correlation at time s after perturbation W:

(V| WHOYO, (— ) O(s)W(0) | ¥) o= Mlen(¥) Il
(W WH(O)W(0) | W)

‘pert

Need to compute backreaction: operator W inserts shock who carries
Poincaré charges.

Boundary particle is kicked:
PL I PR.I.er I Pshuuk =0, ML | M!(.[.\url | Mshnvk = 0.
In boundary particle language: emission of massless particle.

2d equivalent of the vacuum transition in 4d.
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Scrambling in flat space

s % /| .”/}
. N )[: Ras DAt
We find 0E < m: (O (=)Op(8)w ~ (I e (c po—- I)) ‘
2rm . |

Scrambling time: 1, = f# log m/éL.

2
After replacing with C] parameters: 1, = [ log (L - qb,,).

¢

0.6

Scrambling time divergent: consistent with flat space, it takes oo boundary time to reach horizon
(not true in AdS).

Argument of log is not S',,Im, = ¢, , instead S'},m, 18 a correction to universal divergent piece
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Conclusion

Define a 2d flat space model of gravity: CJ gravity
Non trivial partition function.

1
Admits a reformulation in terms of boundary gravitons: flat space version of the Schwarzian,
Dynamics controlled by symmetry breaking BMS, — 1SO(2) x R.
Conjecture: analytic continuation u = it, t ~ t + [, of path integral computes Z, (/) = Tre ~/H,
Wormhole contribution — duality with ensemble: Z,. (f,, f») = (Z,())Z,(p,)).
Correlations non-pertubatively completed by matching with operator in a Matrix Model.
Trace contains mysterious continuous part that destroys signatures of long-term chaos.
Short-term chaos: infinite scrambling time (becomes finite at finite cutoff).

Gravitational entropy plays a different role in I’m‘nn'rmnhling time than in AdS.
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