Title: Quantum Information 2021/2022

Speakers: Eduardo Martin-Martinez, Philippe Allard Guerin

Collection: Quantum Information 2021/2022

Date: March 14, 2022 - 10:15 AM

URL: https://pirsa.org/22030076

Pirsa: 22030076 Page 1/26

$$T(x,y) := H(x) + H(y) - H(x,y)$$

$$T(x,y) := H(y) - H(y|x)$$

$$P(A|B) = P(A|B)$$

$$H(y|x) = -\sum_{x,y} P(x,y) L_{y} - \frac{P(x,y)}{P(x)}$$

Pirsa: 22030076 Page 2/26

Pirsa: 22030076 Page 3/26

Pirsa: 22030076 Page 4/26

Pirsa: 22030076 Page 5/26

Pirsa: 22030076 Page 6/26

Pirsa: 22030076 Page 7/26

Pirsa: 22030076 Page 8/26

Pirsa: 22030076 Page 9/26

Pirsa: 22030076 Page 10/26

Pirsa: 22030076 Page 11/26

Pirsa: 22030076

Pirsa: 22030076 Page 13/26

Pirsa: 22030076 Page 14/26

Postulate 4: Quantum measurements	are represented by a set { Mn } of measurement operators over the fillburt space of the representation of the possible measurement autoones that may occur in a experiment
To the state of the quantum system is 147 images of measurement outcome n is	dately before the measurement the $P(n) = \langle \Psi \hat{M}^{\dagger} \hat{M}_{n} \Psi \rangle$
2. the state of the system after the measurent is \(\begin{align*} & = & At Mn , & \begin{align*} & & & & & & & & & & & & & & & & & & &	
_ Quantum to classical types how	

Pirsa: 22030076 Page 18/26

Postulate 4: Quantum measurements are represented by a set {Mng of meas
Postulate 4: "Quantum measurements are represented by a set {Mng or measurements and sertisfy \(\lambda Mn Mn = 1 \). The index n refers to the possible measurement automes to
If the state of the quantum system is 147 immedately before the measurement that
If the state of the quantum system is 14) immediately before the measurement ton 1. The probability of measurement outcome in is $P(n) = \langle \Psi M^{+} M_{n} \Psi \rangle$
2. the state of the system after the measuremt is $ \Psi'\rangle = \frac{\hat{M}_n \Psi'\rangle}{ \nabla \Psi \hat{M}_n \hat{M}_n \Psi\rangle}$. $\hat{E}_n := \hat{M}_n^{\dagger} \hat{M}_n$, $\sum_{n=1}^{\infty} \hat{E}_n = \hat{A}$ are called POVM Ederats
En: - Mr Mn, SEn = 4 are called POVM Edouats

Pirsa: 22030076

Pirsa: 22030076 Page 23/26

Pirsa: 22030076

$$\hat{E}_{3} = 1 - \hat{E}_{1} - \hat{E}_{2}$$

$$= 1 - \frac{1}{\sqrt{2}}$$

$$P_{ND}(1) = \langle \Psi_{2} | \hat{E}_{1} | \Psi_{2} \rangle = 1 - \frac{1}{\sqrt{2}}$$

$$P_{ND}(2) = \langle \Psi_{2} | \hat{E}_{2} | \Psi_{2} \rangle = 0$$

$$P_{ND}(3) = \langle \Psi_{2} | \hat{E}_{3} | \Psi_{2} \rangle = \frac{1}{\sqrt{2}}$$

