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Kicked Rotor

(2 ‘
H(t) = 57 + Kcos()?b(t _aT).

where 0 is the angle of rotation and L is the angular momentum.

K = Kicking strength
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Standard Map

Livi = Li+ Ksing,, mod 27
Boe 0 L, mod 27.

K=0.2, (Lo,60)=(0.24,4.3)

1 2 3 4 5

Figure: Evolution of a single initial condition
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Standard Map

Livi = Lo+ Ksing,, mod 27
By 0 L L s mod 27.

1 2 3 < 5 6

Figure: Evolution of 4 different initial conditions
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Standard Map

lpid =L+ Ksint,, mod 27
01 =05+ Lous, mod 2.
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Standard Map

Liia=La+HKsing;, mod 27
B =0+ L4, mod 2.
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Standard Map

=L, + Ksiné,, mod 27
= 0.+l mod 27.
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Standard Map

Laai =L+ Ksing,, mod 27
Hn.l :H,;+L;]}1. mOd 277
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Standard Map

Loy =k 4 Ksing,, mod 27
e e mod 27.
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Standard Map

Laai =L+ Ksinég,, mod 27
Hﬂ-l :H!?+ Ln}l. mOd 277

K=0.1
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Standard Map

Liia=La+HKsing:, mod 27
Oor =0+ L4, mod 2.

T e ——

R p———

Vi Y o — -
,@‘.J_,LM'-“""'“‘."VH- — _ '-""'”'"B"«-!.;;,g,

i i~y
Ty AT R '
i, B S, N .

— — S —
[ — Py — R ST LSt T Pl
2 A RS S '_'.’uw'-."'w B SN
S e S e ————— e e =
...---‘-‘-"':Ta——-—"—"_’_'——‘
e S— s ST _ o e
e ————— . o
__,..p-—-""‘—wwb-’f.‘-g'

%Qﬂm
o =y 3

—

= =

..,

= D, T T

il e ALt 28

3TN

Page 18/49



Standard Map

Loi = L.+ Ksint.. mod 27
Bii1 =0, + Loia, mod 27.
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Standard Map

=L,+ Ksinf,, mod 27
=0 +L.ir mod 2.

K=0.9
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Standard Map

=L,+ Ksinf,, mod 27
=0 +L.ir mod 2.

K=0.9
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Standard Map

Lati = L+ K sint;, mod 27
Opi1 = 05+ Laia, mod 27.

K=0.95

3
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Standard Map

E.x =L, F Ksint,. mod 27
Guis =05+ Loia, mod 27.

K=0.95, (Lo,8,)=(0.24,4.3)
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Standard Map

Loi =1+ Ksint,. mod 27
Boy=0,+L.1. mod 27.

K=0.95, (Lo,8)=(0.3,4.209)

Pirsa: 22030053 Page 24/49



Standard Map

Liig = L4 Ksing,, mod 27
Ous1 =85+ Loy, mod 27.
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Standard Map

Liiy = Lyt K sinty; mod 27
Ohi1 = 05+ Laia, mod 27.
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Standard Map

Liiy = L+ Ksin@,, mod 27
0hi1 = 05+ Laia, mod 27.
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Standard Map

Laiz= L4 Ksing.. mod 27
Oie =05 & Lain: mod 27.

5% V1

1
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Standard Map

Lo =t F K0, mod 27
Deis =0 mlais. mod 2.

K=0.95, (Lo,80)=(0.24,4.3)
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Standard Map

loi: =1 L Ksinh mod 27
Oasy =0+ 153, mod 27.

K=0.95, (Lo,8)=(0.3,4.209)
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Standard Map

ey =1+ Ksing, mod 27
it =04+ Lo, mod 2.

K=1.15, (Lo,6p)=(0.24,4.3)
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Standard Map

Liii=Li+ Ksing,, mod 27
Opi1 =0, + Lpt1, mod 2.
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Standard Map

Ly =1L.+Ksing, mod 27
8ox1 =0, € L.:1. mod 2.

K=5, (Lo,60)=(0.24,4.3)
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Standard Map

Ly =1L.+Ksing, mod 27
8ox1 =0, € L.:1. mod 2.

K=5, (Lo,60)=(0.24,4.3)
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Standard Map

Ly =1L.+Ksing, mod 27
8ox1 =0, € L.:1. mod 2.

K=7, (Lo,60)=(0.24,4.3)
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Hénon-Heiles System

1 5
H = 5(p +py) + V(x.y).

%(X2 Fy2 + 2x3y §y3)

V(x,y)
V(x, y) is model potential for the motion of a star in a cylindrically

symmetric and smooth galactic potential.
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Hénon-Heiles System

1
H = S(px +py) + V(x.y)-

Vilx, v) %(x2+y2+2x2y— §y3)

V(x, y) is model potential for the motion of a star in a cylindrically
symmetric and smooth galactic potential.

Figure: Equipotential lines for V(x, y)
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Hénon-Heiles System

Vil v] = % (x> +y?+2x%y — £

Poincare Map with surface of section:

Xx=10 andx>0
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Hénon-Heiles System
V(x,y) = % (x* + y? + 2x%y — %y?’)
Poincare Map with surface of section:

x=0 and x>0 e

Energy=0.02
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Hénon-Heiles System

V(x,y) = 3 (x* + y* + 2x%y — 3y3)
Poincare Map with surface of section: x =0 and x > 0

Energy=0.06
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Hénon-Heiles System

V(x,y) = 3 (x* + y* + 2x%y §y3)
Poincare Map with surface of section: x =0 and x > 0

Energy=0.09
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Hénon-Heiles System

V(x,y) = 3 (x* + y? + 2x%y — 3y3)
Poincare Map with surface of section: x =0 and x > 0

Energy=0.11
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Hénon-Heiles System

V(x,y) = 3 (x* + y* + 2x%y — 2y3)
Poincare Map with surface of section: x =0 and x > 0

Energy=0.11
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Hénon-Heiles System

V(x,y) = 3 (x* + y* + 2x%y — 2y3)
Poincare Map with surface of section: x =0 and x > 0

Energy=0.11
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Hénon-Heiles System

V(x,y) = 2 (x* + y* + 2x%y — £y°)
Poincare Map with surface of section: x =0 and x > 0

energy=0.14
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Hénon-Heiles System

V(x,y) = 3 (x* + y* + 2x%y — 3y3)
Poincare Map with surface of section: x =0 and x > 0

Energy=0.16
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Walker and Ford 1

sumed valid when the number of oscillators is
large) and is exemplified in the work of Fermi®
and Peierls.®

A brief paper by Kolmogorov’ enunciated a
theorem which can perhaps provide a cornerstone
for linking the two aforementioned divergent views
on the effects of the weak perturbation V in Eq. (1).
Kolmogorov did not present a detailed proof of his
theorem; the missing proof, which is quite long
and mathematically sophisticated, was supplied
almost a decade later by Arnol’d® and independently
by Moser.® As a consequence perhaps,the physical
scientist has largely remained unaware of
Kolmogorov's theorem and its implications. For
details of the theory with applications, the reader
is referred to the review article by Arnol’d, '°
However, in order to make this paper self{-con-
tained, we briefly present here those details of the
theory relevant to this paper; in particular we may
restrict our attention to systems with two degrees
of freedom without significant loss of generality.

Introducing action-angle type variables (J;, ¢;)
for a two-oscillator system, Hamiltonian (1) may
be written

H=HU,J,)+VU J,, 0, 0,). (2)

If we set V =0, then Hamiltonian (2) generates
motion for which the J's are constant and ¢;

=wj (1 J9)i + ¢y, where the unperturbed frequen-
cles wj are given by w; =3Hg/3J;. Following
Kolmogorov, we view the unperturbed system
motion in phase space as lying on (wo-dimensional
tori where (“71.- @2] are the angle coordinates on the
tori and (J , J,) are the “radii” of the tori. By
assuming that V is sulficiently small and by as-

@e- 2 o0E0a=®*" @

& Walker and Ford 1868, pdf
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perturbation V largely serves only to slightly shift
the frequencies and introduce small nonlinear har-
monics into the motion. '* Nonetheless, the rela-
tively small set of initial conditions leading to
motion not on preserved tori is, from a physical
point of view, pathologically interspersed between
the preserved tori. Moreover, Arnol'd'® conjec-
tures that the system phase-space trajectory in
regions of the destroyed tori is quite complicated
indeed, perhaps ergodically filling the destroyed
region. Thus, if Hamiltonian (2) is ever to pro-
vide generally ergodic motion best described in
terms of statistical mechanics, the source of such
behavior must lie in the reasons for the very ex-
istence of this relatively small set of destroyed
tori. Hence we now investigate the properties of
V which lead to the destruction of tori.

To this end, we expand the V of Hamiltonian (2)
in a Fourier series and write

H=HU ,J,) -1,

mn

II'JE)

x coslme, + no,) + +++, (3)

where we have explicitly written only one term in
the series. The KAM formalism seeks to elimi-
nate the angle-dependent terms using a convergent
sequence of canonical transformations, each of
which 1s close to the identity transformation, thus
obtaining a Hamiltonian which is a function of the
transformed action variables alone and which is
close to the original Hamiltonian., If this can be
accomplished in some general sense, then one im-
mediately finds that the perturbed motion, for the

O
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dictable instability. Section IV relates our results
to the Henon-Heiles system, and Sec. V presents
our conclusions.

I1. ISOLATED RESONANCES

In this section, we illustrate the distortion of
unperturbed tori caused by isolated angle-depen-
dent resonant terms, The Hamiltonians we con-
sider are of the form

H:HOUI,J2)+]’ UI,J2) Coa(mq)l -mpz),

mn

(10)

where w; = @Hg/8J; are both positive and where
mandn are integers such that the inequality (7)
can be satisfied. For brevity, an isolated pertur-
bation of this type is called an m-n resonance,
and the associated zone of highly distorted tori,
loosely specified by inequality (7), is called an
m-n resonance zone. Such perturbations are es-
peclally easy to analyze since they give rise to a

: ([1{,'1 . qi?l. (15)

Thus the unperturbed level curves in the (g,, p,)
plane, hereafter called the J, plane, are concen-
tric circles centered on the origin since J, is a
constant. Similarly points on the level curves in
the (q,,p,) plane or J, plane, defined by ¢, = 0,
£,>0 (or equivalently ¢, = : 31), also lie on con-
centric circles. These circular level curves in
either plane are enclosed by a bounding level curve
representing the intersection of the energy surface
with each plane.

We now introduce a 2-2 resonance and write

H=H,W,J,) + aJJ,cos(20, - 20,) . (18)

Now this system has the additional constant of the
molion

e et 1n
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For all four of the above periodic orbits, we
have J, =J, = (¢, - ¢,)=0, where a dot denotes time
differentiation. For the stable periodic orbits we
find

@8 "o0@NAR @ ~Se@=

Pirsa: 22030053

¢ Walker and Ford 1868, pdf

2007 - Dynamical..

% e 8 Q ® @ v K MO @ w - K P

B 7 & D
J=h [1- 1-§ EP~7] (22b)

as the values of J, and J, on the unperturbed 2-2
torus. Consequently, the unperturbed 2-2 torus
and the perturbed 2-2 resonance zone exist for all
allowed energies 0< E< & . As the energy in-
creases from zero, the 2-2 resonance zone moves
out from the origin and increases in width.

The closest (low-order) resonance to the 2-2 is
the 3-2 or the 2-3. We investigate each. First
consider

H=HJ,, J)) + BJ,¥*J,cos(3¢, - 2¢,) . (23)
The additional constant of the motion is
I=2J,+3J, , (24)
and the level curves in the J, plane are given by
E=41,41%. (5 -8 NJ, 2J?
- (3 B)IJ,3 - 2J,%%) cos3o, . (25)
Typical level curves for Eq. (25) are presented
in Fig. 7. Here the points at the center of each
of the three crescent regions do represent a single
periodic solution, and thus the 3-2 resonance zone
consists of a chain of three islands. Similarly,

the three self-intersecting points on the separatrix
represent a single unstable periodic solution.

Again setting J, = J, = (3¢, - 2¢,) = 0 yields

Jy=(1424,%2) /(134 3J,2)
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