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Abstract: Fracton models provide examples of novel gapped quantum phases of matter that host intrinsically immobile excitations and therefore lie
beyond the conventional notion of topological order. Here, we calculate optimal error thresholds for quantum error correcting codes based on
fracton models. By mapping the error-correction process for bit-flip and phase-flip noises into novel statistical models with Ising variables and
random multi-body couplings, we obtain models that exhibit an unconventional subsystem symmetry instead of a more usual global symmetry. We
perform large-scale parallel tempering Monte Carlo simulations to obtain disorder-temperature phase diagrams, which are then used to predict
optimal error thresholds for the corresponding fracton code. Remarkably, we found that the X-cube fracton code displays a minimum error threshold
(7.5%) that is much higher than 3D topological codes such as the toric code (3.3%), or the color code (1.9%). This result, together with the predicted
absence of glass order at the Nishimori line, shows great potential for fracton phases to be used as quantum memory platforms. If time allows, | will
also present some of our more recent progress on fractons.
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Gapped and gapless states
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What is a fracton?

Example: X-cube model

* Exactly solvable stabilizer
Hamiltonian on cubic lattice (3D).

HXcube — _ZAL _Z(Bi +Bg _'_BTZ))

v

* Ground states A, = BY = 1.

* GSD on 3-torus of size Lx L x L: a qubit per ed_ge £
* log, GSD = 6L — 3 (sub-extensive) on cubic lattice
* Gapped
* Locally indistinguishable A, = HXE

* Similar to topological order but not

A “
fully topological =
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What is a fracton?

Example: X-cube model

* Exactly solvable stabilizer | ' : : | :
Hamiltonian on cubic lattice (3D). jllE BN N N N .

A=1[x. B:= [] 2 | R

Lec bl lp )__“- =1 -1 4 3 =
cube: A, = —1. ji BN ..
* Isolated A-excitations are created at | | | | | |

corners of a membrane operator jiy N TN W B
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What is a fracton?

Example: X-cube model

* Exactly solvable stabilizer
Hamiltonian on cubic lattice (3D).

A=][x. BY= ] %

fce b~villp
an cube: 4,
* |solated A-excitations are created at

corners of a membrane operator
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What is a fracton?

Example: X-cube model

* Exactly solvable stabilizer
Hamiltonian on cubic lattice (3D).

A=][x. BY= ] %

fce b~villp

* cyan cube: 4,

* |solated A-excitations are created at
corners of a membrane operator
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What is a fracton?

Example: X-cube model

* Exactly solvable stabilizer
Hamiltonian on cubic lattice (3D).

A=][x. BY= ] %

lece b~uib L

* cyan cube: A, = —1.

* Isolated A-excitations are created at
corners of a membrane operator

A fracton is an emergent quasiparticle which fractionalizes into pieces while moving.

It is immobile in the conventional sense!
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Fracton order (3+1D)

* Unconventional topological order
* Interesting gapped quantum phases beyond topological quantum field theories? Yes!
* Self-correcting quantum memories in d=3? Not fully realized yet!

'S >
Hao Song

Type-I: Chamon, Bravyi,
Leembhuis, Terhal (2005, 2010)
Vijay, Haah, Fu (2015, 2016)

Type-ll: Haah (2011)
Yoshida (2013)
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Open questions on fracton Order (3+1D)

® How to properly define such phases in the continuum,
RG fixed point?

® A systematic way to distinguish or characterizing
fracton phases, like algebraic theory of fractons?

® |ts potential applications for quantum computation and
error correction?
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Self-error correction vs active error correction e

Hao Song \

® Self-error correction: errors are correctable by thermal
bath. “Decoder = thermal bath.”

® Various practical active decoders, e.g., RG decoder.

®Fracton order may allow more efficient decoders

Brown and Williamson (2020)

®Practical decoders may sacrifice some fault tolerance
for efficiency

Pirsa: 22030033
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Self-error correction vs active error correction

® Self-error correction: errors are correctable by thermal
bath. “Decoder = thermal bath.”

® Various practical active decoders, e.g., RG decoder.

®Fracton order may allow more efficient decoders
N.
Brown and Williamson (2020) N

®Practical decoders may sacrifice some fault tolerance

for efficiency
The theoretical limit of fault tolerance of fracton codes
(in dependent of the choice of decoders)?

Page 13/47
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Outline

1. Review of quantum error correction in toric code
[Dennis, Kitaev, Landahl, Preskill, 2001]

2. Optimal Thresholds for the X-cube Code
[arXiv:2112.05122]
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Toric code as a topological quantum memory

* Toric code is a Calderbank-Shor-Steane (CSS) o——o o
code

* Stabilizer generators

By Siaa%

* Code space Cis selected by A, = B, = 1.

» dim C = 4 = 22 on torus (i.e. periodic boundary
condition).

physical qubits (on edges)
/ =rauliz, / ="\ =PauliX.

Pirsa: 22030033 Page 15/47



i

&
. .

Toric code as a topological guantum memory

'

» Toric code is a Calderbank-Shor-Steane (CSS) L EeS e g
code ¢ EI ‘ | |
* Stabilizer generators i
B, = Z%®* i = »
. g ¢ ! & o ¢
* Code space Cis selected by A, = B, = 1. !
» dim C = 4 = 22 on torus (i.e. periodic boundary " o ”
condition). ¢ ! T () (D]
* 2 logical qubits " e ®

physical qubits (on edges)
/ =Pauliz, / ="\ _=PauliX.
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Toric code as a topological guantum memory

* Toric code is a Calderbank-Shor-Steane (CSS)
code

* Stabilizer generators

A, = X By =20
* Code space Cis selected by A, = B, = 1. - =
» dim C = 4 = 22 on torus (i.e. periodic boundary i
condition). ()] T () (D]
* 2 logical qubits ® e o

* Immune to sparse local errors

* An Z error = two flipped 4, (“A-syndrome” = the set physmall qUtf_'_,tS (\?n edges)
of flipped A-operators.) / =rauliz, / ="\ =PauliX.
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Toric code as a topological guantum memory

* Toric code is a Calderbank-Shor-Steane (CSS)
code

* Stabilizer generators

* Code space Cis selected by A, = B, = 1.
« dim C = 4 = 22 on torus (i.e. periodic boundary
condition). () r P P
* 2 logical qubits ®

* Immune to sparse local errors

* An Z error = two flipped A, (“A-syndrome” = the set
of flipped A-operators.)

* Any local process clearing the syndrome corrects the
error.

physical qubits (on edges)
/ =Pauliz, J/ = =PauliX

Suppose Z (or X) errors occur at each
qubit independently with probability p.

* Dense errors = uncorrectable logical errors. sparser pZX  denser

correctable uncorrectable
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* Stabilizer generators

By S

* Code space Cis selected by A, = B, = 1.

» dim C = 4 = 22 on torus (i.e. periodic boundary
condition). ()] T () (D]

* 2 logical qubits ®

* Immune to sparse local errors
* An Z error = two flipped 4, (“A-syndrome” = the set

physical qubits (on edges)

of flipped A-operators.) / =Pauliz, / ="\ =PauliX.
* Any local process clearing the syndrome corrects the Suppose Z (or X) errors occur at each
SISl qubit independently with probability p.
* Dense errors = uncorrectable logical errors. sparser plX  denser

correctable uncorrectable
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Q = label set of qubits (edges)
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Toric code in chain complex terminology

Q = label set of qubits (edges)
A = label set of A-terms (vertices)
B = label set of B-terms (plaquettes)
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Toric code in chain complex terminology

e Let Z$ = Fun(S,Z, = {0,1}) be the set of Z,-
valued functions (i.e., indicator functions) on set

S.
 Relation between qubits and stabilizers
.|.
7A Oa, ZQ BL 7B
2 = 2 3 2
o', 9B

Q = label set of qubits (edges)
A = label set of A-terms (vertices)
B = label set of B-terms (plaquettes)
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Toric code in chain complex terminology

e Let Z5 = Fun(S,Z, = {0,1}) be the set of Z,-
valued functions (i.e., indicator functions) on set

S.
* Relation between qubits and stabilizers
.|.
7A 04, ZQ aﬂ 7B
2 7 2 3 2
o', 9B

» dg maps a collection of B-terms to the Z-error
configuration generated by them.

Q = label set of qubits (edges)
A = label set of A-terms (vertices)
B = label set of B-terms (plaquettes)
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Toric code in chain complex terminology

e Let Z5 = Fun(S,Z, = {0,1}) be the set of Z,-
valued functions (i.e., indicator functions) on set
S.

* Relation between qubits and stabilizers
.|.
Op

dA
7 — 7Y — ZF
)N 9B

» dg maps a collection of B-terms to the Z-error
configuration generated by them.

/ =Pauliz,
Q = label set of qubits (edges)
A = label set of A-terms (vertices)

B = label set of B-terms (plaquettes)
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Toric code in chain complex terminology

e Let Z5 = Fun(S,Z, = {0,1}) be the set of Z,-
valued functions (i.e., indicator functions) on set

S.
* Relation between qubits and stabilizers
.|.
7A 04, ZQ BL 7B
2 7 2 3 2
o', 9B

* dg maps a collection of B-terms to the Z-error
configuration generated by them.

* The transpose 6; maps an X-error configuration to the / =Pauliz,
collection of B-terms flipped by them.
Q = label set of qubits (edges)

A = label set of A-terms (vertices)
B = label set of B-terms (plaquettes)
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Toric code in chain complex terminology

e Let Z5 = Fun(S,Z, = {0,1}) be the set of Z,-
valued functions (i.e., indicator functions) on set

S.
* Relation between qubits and stabilizers
.|.
7A 04, ZQ BL 7B
2 7 2 3 2
ot os | | - B

* dg maps a collection of B-terms to the Z-error
configuration generated by them.

* The transpose 6; maps an X-error configuration to the / =Pauliz,
collection of B-terms flipped by them.

., .
= Pauli X.

Q = label set of qubits (edges)
A = label set of A-terms (vertices)
B = label set of B-terms (plaquettes)
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Toric code in chain complex terminology

o _ﬂ'
Hao Song

e Let Z5 = Fun(S,Z, = {0,1}) be the set of Z,-
valued functions (i.e., indicator functions) on set

S.
 Relation between qubits and stabilizers
.|.
7A 04, ZQ 8& 7B
2 7 2 3 2
o', 9B

» dg maps a collection of B-terms to the Z-error
configuration generated by them.

* The transpose 6;: maps an X-error configuration to the A =Pauliz,  \=Paulix.
collection of B-terms flipped by them.

Q = label set of qubits (edges)
A = label set of A-terms (vertices)
B = label set of B-terms (plaquettes)
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Toric code in chain complex terminology

e Let Z5 = Fun(S,Z, = {0,1}) be the set of Z,-
valued functions (i.e., indicator functions) on set
S.

* Relation between qubits and stabilizers
.|.
7A 04, ZQ BL 7B
2 7 2 3 2
o', 9B

» dg maps a collection of B-terms to the Z-error
configuration generated by them.

* The transpose 6; maps an X-error configuration to the A =Pauliz,  \=Paulix.
collection of B-terms flipped by them.
. ajoaB =0=20100, Q = label set of qubits (edges)
A = label set of A-terms (vertices)
B = label set of B-terms (plaquettes)
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Toric code in chain complex terminology

e Let Z5 = Fun(S,Z, = {0,1}) be the set of Z,-
valued functions (i.e., indicator functions) on set
S.

* Relation between qubits and stabilizers
.|.
7A 04, ZQ BL 7B
2 7 2 3 2
o', 9B

» dg maps a collection of B-terms to the Z-error
configuration generated by them.

The transpose 6; maps an X-error configuration to the A =Pauliz,  \=Paulix.
collection of B-terms flipped by them.

. 3J°33 =0=2010d, Q = label set of qubits (edges)

A = label set of A-terms (vertices)

B = label set of B-terms (plaquettes)

Logical Z-operators € keraf, but € imdg.
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Toric code in chain complex terminology

e Let Z5 = Fun(S,Z, = {0,1}) be the set of Z,-
valued functions (i.e., indicator functions) on set

S.
* Relation between qubits and stabilizers
aT
7A %40 59 By B
2 3 A 2 ‘8 2
8A B
» dg maps a collection of B-terms to the Z-error
configuration generated by them.
* The transpose 6; maps an X-error configuration to the / =Pauliz, = PauliX.
collection of B-terms flipped by them.
+ 3l 0dy=0=20}00, Q = label set of qubits (edges)
» Logical Z-operators € kerd,l, but & imaj. A = label set of A-terms (vertices)

» Logical X-operators € kerd;!, but  imd,. B = label set of B-terms (plaquettes)
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Maximal success probability in Z-error correction

* All Z-error configurations n,n" acts trivially on the code space, iff n — ' € imdg.
Z-error equivalence class [n] = n + imdp € Zg/imag.

* For each possible A-syndrome o € Zg’q, there are four compatible Z-error
equivalence classes [1,], [Ns] + 31, [1s] + 32, and [ng] + 31 + 35.

* Choose n, such that [n,] has the largest probability among the four.

* maximal success primality in Z-error correction P, = ¥ ;[n,].

» Suppose Z errors occur at each qubit independently with probability p.
By analogy to statistical-mechanical models, as system size — oo,

Z

i N | Pc P, -0

correctable uncorrectable

Pirsa: 22030033 Page 31/47



Mapping to statistical-mechanical models

* For Z-error configuration n with n(¥) = 0 or 1 on edges
with or without an error,

> n(®)
pr(m;p) = [ @ (1 -p)' " (—) dBp

LeQ I-p

* Introduce auxiliary temperature
e

D

1—p
* The relation is called the Nishimori line in the p-T plane. f

N[

* The total probability of a Z-error equivalence class [n] =
n + imdp =2 partition function of random Ising model at T f

HE =" (=1)" IT Sp==>" JopSpSy
(pp’)

teQ pedle

Jpp = £1 with probability 1 — p and p.
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Mapping to statistical-mechanical models

* For Z-error configuration n with n(¥) = 0 or 1 on edges
with or without an error,

> n(®)
pr(m;p) = [ @ (1 -p)' " (—) dBp

LeQ I-p

* Introduce auxiliary temperature
e

D

— lTp
* The relation is called the Nishimori line in the p-T plane. f

N[

* The total probability of a Z-error equivalence class [n] =
n + imdg = partition function of random Ising model at T f

HE =[-3"(=1)" T Spl= =" Jpp SuS
(pp’)

teQ pedle

#pm = £1 with probability 1 — p and p.
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Wisdom from statistical-mechanical models

* Probabilities for the four classes [n], [n] + 31, [n] + 32, and f
[n] + 31 + 3, with the same syndrome differs by a
contractible domain wall (on random Ising model side).

* In the ordered phase, one dominates = correctable

* In the disordered phase, they are comparable = uncorrectable
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Wisdom from statistical-mechanical models

* Probabilities for the four classes [n], [n] + 31, [n] + 32, and f
[n] + 31 + 3, with the same syndrome differs by a
contractible domain wall (on random Ising model side).

* In the ordered phase, one dominates = correctable
* In the disordered phase, they are comparable = uncorrectable

2.0+

Para

__.--=""" Nishimori line

= = | = | = =
- || == | =] =D

0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
p
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Outline

1. Review of quantum error correction in toric code
[Dennis, Kitaev, Landahl, Preskill, 2001]

2. Optimal Thresholds for the X-cube Code
[arXiv:2112.05122]
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Logical operators in X-cube codze o
* Toric code is a Calderbank-Shor-Steane
(CSS) code allows us to treat Z and X errors

separately

* Stabilizer generators
4 = x®1: . Bp s Z®4’,

* Code space Cis selected by A, = B, = 1.

e dim C = 2°L73 on LXL XL torus (i.e. periodic
boundary condition).

* 6L-3 logical qubits
* Logical Z operators: M, M5, ...
* Logical X operators: 8¢, S, ...

Pirsa: 22030033 Page 37/47



X-cube fracton code
(on a cubic lattice with a qubit per edge)

Suppose X (and Z) errors occur independently at each
gubit with probability p.

5 D 2o n(8)
pr(n;p) = [[p"® (1-p)' " (—1 ~ )
£eQ 4
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Random Plaquette Ising model

Hy == 0" ]I

teQ cedle
For X-error equivalence class
[nlx =n+imd,

(b)

Random Anisotropically
Coupled Ashkin-Teller model

B oz o 5 cr b
HE((So. 80 ) =-3 N Jesusi.

e BT

§2=g825y, B = (—1)"@ea)
For Z-error equivalence class

7]z =n+imdg



Random Plaquette Ising model

Symmetry: S, —» —S§_ forc
on any xy-, yz-, or zx-plane

G4 (x) = [{S:8c159:teSotrrs)]
= L=

QA = I3 Z [< Z Se(,y,2)Sc(@,y,2+1) >]
z=0 z,y=0

planewise dipole moment
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(b)

Y
Z “"r—,‘-:
-l

+

Random Anisotropically
Coupled Ashkin-Teller model

Symmetry: S5 — 58, sV -
— S for v on any u v-plane

G (r) = [<S$ c+m>}

linewise magnetization



Phase diagrams (by Monte Carlo simulations)

* First-order phase transition for
both models at small p.

(revealed by energy histogram)

* For larger p, the phase
transitions are softened to

continuous ones.
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Random Plaquette Ising model

(b)

Random Anisotropically
Coupled Ashkin-Teller model

L6 [ (b) RACAT
-

{emor correction feasible) 0.8 | (ermor corection feasil inle)

Temperature 7

.,

———
-
e
=

]

Slable ordered Phase
Eins

Phase-flip error rate p
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Phase diagrams (by M “& 7.1 o I
* First-order phase transition for (312
both models at small p.

(revealed by energy histogram) T DR
* For larger p, the phase 05 Py peaom | oof | oof

transitions are softened to
continuous ones. T

* To precise identify the location
of the transition, we study the F
second-moment correlation , Ny — S
length *» By 3

- o5 T s
1/2 ) e L e
3.0 B ~ ~-
]_ (0) - Lz ““-.___!.
— M oAk ! -
§L = g—mr = -1 .
2 sin (| minl/z) G (klllill) %, [  Stableordered Phase Y -] Stable ordered Phase

g 2.0 (error correction feasible) Wy & 0.5 [ (erorcomection feasiole)
£ £
21 X [

€L 1 5E pX = 0.152(4) > We L. f,;ﬁk_u_m.-,.;;.' <
* Scaling 7 =9 (L" (== Tc)) § :

9 CrOSSing at (TC’ g(O)) if there iS :I.;\:;’. 0} ll.:_’ L Ii’ o Illi f.l.:.?‘ |J.I i 'Zl.l’.2 |l.I ll‘.li\ |2.I \.l._’Cl 'I.‘;Il.l:” Ii’.:i’l 0 :J_’ 0 :i’i! |J.Il|l f.l.llf.'l |l.:Jii r..:lTIU.:j.'\ CI.:l!l 0.10
a continuous phase transition. SRECRIRENS
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Optimal thresholds of CSS code

* X-cube code (3D) (a) (b) -
e pX =152%, p% = 7.5% : e tie
* 2D toric code & color code P it il m'
* pX =p¥=109% T
Honecker, Picco, Pujol, 2001 —5'\,‘{.1_5:IIS
Katzgraber, Bombin, Martin-Delgado, 2009 ‘ " {- > . i
* 3D toric code e
» pX =23.5%,pZ = 3.3% 3 4
Ozeki and Ito, 1998 ) .
Ohno, Arakawa, Ichinose, Matsui, 2004 ? Random Anisotropically
Random Plaquette Ising model Coupled Ashkin-Teller model
* 3D color code
. pé( — 27.6%, pg -_ 1.9% 1 : bj‘l":‘r" Nishimori line 1.6 -‘\'-0] RACAT - Nishimari line
Kubica, Beverland, Branddo, Preskill, Svore,2018 N‘m.__h Lap ‘“"'--..__h
. ] ‘-\\‘\ . L2 “‘-____!.
. Approximate dua“ty (N|Sh|m0r| 2007) % 2.0 b e e el Ty éu S otk !4
works for the X-cube code: = el *"[e ® ook
H(pX) + H(pZ) ~ 1, where H(p) = il I
~ plog, () =1 — plog,(1 —p)isthe i M oh L
Shannon entropy. 200 0.02 0.0 0. 06 .E'.i.l-.!hu:v;[;[[d.:;.J ' 0.16 0.18 0.2( 0.0 0.0 002 0 I.’JP'IJ:E:-‘II.“.E[.:\"'l;-.J:“.... .08 0.09 0.1C
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Absence of glass order along the Nishimori line

. 2D random bond Ising model .3D random bond Ising model s #ong
* Normal and spin g|aSS order I 1 Fig from Ohzeki, Jacobsen, 2014

correlation functions

T.4
GA (I‘) p— [<k5 b(+z8(—|—r«5c+r—|—z>]

(I‘) <SCSC+2;,SC+I‘SC+I'+£>2i|
)=

GB (T’ KSTvaLuﬂ
(}’) <S S(’—f—r'r) } P‘;
* Glass order e
lim G(r) =0, lim Gsg (r) #0 N g
o0 T— 00 Ok e 12 .

Slable ordes edPl
0.5 | (emor comection f sloIeJ

&, Slable ordered Phase
g 20F  (emorcomection feasitle)

i
!
i
r
Tempera
!
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Absence of glass order along the Nis

* Normal and spin glass order
correlation functions

GA(r) = [(b :Sect2SctrSetrtz)]
2 (1) = (S Sc+£Sc+rSc+P+ﬁ>2]
)= [(5:’"5&”)}

) = [(5282108)"]

GP (r
qc (r

e Glass order
lim G(r)=0, lim Ggsg (r) #0

T— 00

* Along the Nishimori line 2 no
glass order

* We double-checked Nishimori’s
argument and showed in general

G (?“) = GSG (?")
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ZDTcilndom bond Ising model

T.4

T A

nimori line

3D random bond Ising model

Fig from Ohzeki, Jacobsen, 2014

(a} RPI Nist [ 1.6 | (0) RACAT Nishimari lin
- -~
e -
Te 1 .
- -
- ~
‘b._\ i ."A-.
o Lz 2 .
g 5 By
-~ L 1.0
8 ,oF  Stableordered Phasa = -1 Slable ordered Phas:
{emor correction feasible) "y § 0.8 | (emorcomection fe: sunlel
g td bl
= 0.152{4) .)%(. 2 oae BE = 0.075(2)
0.5
L | 1 L
0.07 0.08 0.09 0.

13 0.04 0.
Phase-flip error rate p
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Summary

* We make a first study of the optimal thresholds of fracton codes

* For the X-cube model, pX = 15.2% and p# = 7.5%---higher
minimum error threshold (7.5%) than 3D topological codes.

* Random spin models with subsystem symmetry.
» Analytically show no glass order along Nishimori line.
* Numeric suggests no glass order (even below the Nishimori line).

* Approximate duality relation between pX and pZ.

Outlook
* Haah'’s code and checkerboard model = pX = pZ = 11%?

* Measurement errors in fracton codes & high-rank tensor gauge theory in
4D?

* Factonic states for universal quantum computing?
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Thank you for your attention!
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