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Abstract: | will describe an approach to extracting the physical consequences of S-duality of four-dimensional N = 4 super Yang-Mills (SYM) and
its string theory dual based on SL(2,Z) spectral theory. | will show that processing S-duality in this way leads to strong consequences for the CFT
data, both perturbatively and non-perturbatively in al parameters. In large-N limits, | will argue for the existence and scaling of non-perturbative
effects, both at large N and at strong 't Hooft coupling. An elegant benchmark for these techniques is a certain integrated stress-tensor multiplet
four-point function, whose form | will elucidate. |1 will explain how the ensemble average of CFT observables over the N = 4 supersymmetric
conformal manifold with respect to the Zamolodchikov measure is cleanly isolated by the spectral decomposition, and will show that the large-N
limit of the ensemble average is equal to the strong-coupling limit of the observable in the planar theory, which isits value in type 11B supergravity
on AdS 5 x $"5. This embeds an emergent averaged holographic duality within the conventional holographic paradigm.

Zoom link: https://pitp.zoom.us/j/951978740622pwd=QU4vbXNNeFVmSOhNbTV LL 24wdDBndz09
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Motivating remarks

« N =4 SYM is a beautiful theory from a multitude of perspectives

- Maximal SUSY => rigid structure of CFT data
- Approaches: perturbation theory, bootstrap, localization, integrability

- Via AdS/CFT, it furnishes our most robust and explicit definition of non-perturbative
quantum gravity

* |t enjoys S-duality [Montenen, Olive; Witten, Olive; Osborn; Sen]:
- Local CFT observables (9(7) are invariant under SL(2,7) transformations: O(7) = O(y7)

An inherently non-perturbative duality; obscured in the 't Hooft limit

- A symmetry that has not been fully used! Ime=y
0 dri atr+ b

t=—t—rryr=——, [“ e SL(2,7)
2r  goMm ct+d c d

R ! P Rer=a
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Motivating remarks

* In practice, very little concrete information about the modular structure of CFT
observables (9(t) is known to complement perturbation theory

Idea: Bake in modular invariance at the outset.
Reduce CFT observables to their dynamical content and systematically
explore the consequences of S-duality.

* Facilitated by a robust SL(2,7) spectral theory

- Simple calculations yield a wealth of insights into the structure of perturbation
theory and of the instanton expansion

« Structure is especially rigid at large N in the 't Hooft limit with 4 = Ng%M held fixed

- SL(2,7) invariance implies the existence of non-perturbative effects at large N
and at strong coupling (4 > 1)

Pirsa: 22030031 Page 4/39



14:06 Tue Mar 156

M

Motivating remarks

» At strong coupling (4 > 1) /' = 4 SYM is famously dual to type |IB supergravity on
AdSs X S, with a prescribed set of stringy «’ corrections

+ Remarkably, S-duality has something to say about this:

The large-N limit of ensemble averaged ./ = 4 SYM is the strong-
coupling limit of the planar theory, i.e. AdSs X S° supergravity

\

Factonzatlonf‘
wormholes’»’

* An emergent averaged holographic duality within string theory

"SL(2,Z)

ensemble”
statistics

(4 — o0)
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Outline

1. SL(2,7) spectral theory for 4 = 4 SYM observables

2. Example: integrated stress-tensor multiplet four-point function

3. Perturbation theory and the analytic structure of spectral overlaps
4. Large-N and the 't Hooft limit

5. Supergravity as an emergent ensemble average

6. Statistics of the “SL(2,7Z) ensemble”

. Remarks on AdS/CFT and wormholes
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1. SL(2,7) spectral theory

The fundamental domain % of SL(2,7):

A

F

Imz =y

F

I » Rer=x

« Natural metric on moduli space:

dsc =

Pirsa: 22030031
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Laplacian: A, = — y%(9> + "’E)
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X = —
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8¥YM




14:10 Tue Mar 15

SL(2,7) spectral theory

* There is a natural inner product on this space:

r dxdy = ——
(.f,g)=J )2 A7)g(7)

F

« Basic idea: decompose O(7) into eigenfunctions of A_ using this inner
product

- This is possible when ||O||* = (6, 6) < oo:

- This is generic for //* = 4 SYM observables (1) (cusp 7 — ioo: free limit)
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Spectral resolution of A_

6(r) = 0 + [ d—’",(@, E)E(1)+ ) (0.9,) ()

L

The complete basis of eigenfunctions of &r splits into three branches:
(1) The constant function:

A l=0

T

(2) Continuous branch: real analytic Eisenstein series
y : e
AE(t)=5(1 =5)E(7), s€E 5 + iR
(3) (Infinite) discrete branch: Maass cusp forms

1,
A7) = (Z + f,j) Bz, 0<n<bh<...
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Real analytic Eisenstein series

+ Defined via a Poincaré series

E(®= )  Im{y7), Re(s)> I

yEPSL(2,Z)/Z
« Satisfies the functional equation

E¥(t) = A(S)E(7) = Ef*_ (7) (AGs) = 7 T(5)C(25) = A(1/2 = 5))

* Admits a meromorphic continuation to the entire complex s plane

= 20,._(k
E¥(t) = A(s)y” + A(l - Sy + z 2 cos(2nkx) 62'*_2( )\/}K\._%(erk},-)

k= l k.‘p'—?

lL‘:‘I ]{ .\Ij
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Maass cusp forms

* The discrete branch is much more wild & mysterious

» Related to the energy eigenstates of the quantum mechanics of a particle
propagating on %, a classically chaotic system

* Functional form is similar to the continuous branch

00
Pl = a;” : 003(2;':&):)\/}!( i (2mky)
k=1

. The eigenvalues {7, } and Fourier coefficients {ujf”}} are sporadic real numbers
with very interesting statistics (“arithmetic quantum chaos” [Sarnak])
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3 (¢7)o(y)
'l l I-':Il; ‘\l'-.; J (f, J:; ){] (.“ lf J

1 g . , (é3)o(y)
L / \ [ f\ /
/ -\\ | f/

- i
I[|!"'%+f\/2|h)[1(!})
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Spectral decomposition of CFT observables

CFT observables admit a unique decomposition in this basis:

ds N
4—};(@, E‘.) E_s.(f) o = z (@: Qb”) d)n(f)

I
" =l

where:

dxdy

0 = vol(F)~! [ = O(r) = Res,_ (0O, E;) is the modular average

g Y

dxdy I S _ _
(0,E) = ——0(1)E|(7) = —y'0y(y) is a Mellin transform of the
g Y o >

zeromode
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Spectral decomposition of CFT observables ity

Conseguences:

(1) The overlap (@, E,) satisfies a functional equation

IB.E)}= .5 _ {O,E,_)
sy ] = A{\] ia Ll

(2) The constant term 0 is the ensemble average over the conformal manifold (wrt the
Zamolodchikov measure) ®

(0) = w)l(.ffﬁ'ﬁ’)_'J. du 4 O(t) = O by virtue of maximal SUSY

e e
M
el vily
m——

pe

(3) “Instantons are redundant:” O(7) = Oy(v) + Z 2 cos(2nkx)O(y)
k=1
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2. Integrated correlator

« “CFT observables:” non-perturbatively well-defined

e.g.: correlators of protected operators, spectrum of the dilatation operator,
structure constants
not, e.g.: “anomalous dimension of the Konishi”

« Arare and beautiful example: integrated 0,y four-point function of [Binder
Chester Pufu Wang 2019]

[ ~

SUSY-preserving measure

S‘,?N(f) = dudv!()(u, V)TN(“’ y) +—— (Dynamical part of) 20’ 4-pt function

] 4
=, ZAT d;;r IOg Z;{ (i?’.’., T) +—— Mass-deformed sphere free energy (localization)
m=()
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Integrated correlator

« Remarkably, & (7) is conjecturally known for all N, 7 (!) [Dorigoni Green Wen 2021]

_ 1 0 Jl'f 5]
GN(T) = 5 Z th dé By(&) exp (——f |mz +n |h)

(m.n)eZ> ) B

« The kernel B,(¢&) is determined by recursion from N = 2 via a Laplace difference
equation satisfied by & \/(7)

+ Another useful representation

NN=-1) 1 & e
Gy = ——— = Y (= )M
N®) = =3 ‘_§=2j< YeMEX()

e.g. for SU(2), ¢ = s(1 — 5)(2s — 1)?
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Integrated correlator

* We claim that this integrated correlator is given exactly by the following
spectral decomposition

N(N — 1 ds
( ) + [ L] - C‘.gN)Ekg*(’r)
Re s—L 47l S1n 7zs
2

—— Se——
(I LGN B

+ In particular: (€, ¢,) =0

?N(T) -
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3. Perturbation theory and the analytic structure of
spectral overlaps

- Consistency of the weak-coupling (y >> 1) expansion constrains (O, E)
(recall: y = 4.frf'gf,M)

l
@{}(}") = <@> 25 J i[ @, E\}(A(5)1}5 4 A(] — S)yl—.\')

Re s=4 7

* Perturbation theory: upon contour deformation, only non-negative integer
powers of y, no logarithms

- Large-|s| asymptotics of { O, E,} encodes asymptotics of perturbation
theory
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Perturbation theory and the analytic structure of
spectral overlaps

« Claim: the most general { O, E} consistent with perturbation theory takes
the form

T

(0,E} = ——s(1=)f,()+  fu(®

Sin ELS‘ —

non—perturbative ~ (gg)"

perturbative ~ y™"

where both f,(s), f,,(s) are:

- symmetric under reflection s — 1 — s
- regular for s € C away from s = 0,1
-suchthat {O,E;} =0fors = 1/2
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The optimal simplicity of &,(7)

Recall the SU(2) integrated correlator &,(7):

(@2 ) =0
.fr.1p("’.) =0
fi5) = @25 = 12

An optimally simple observable consistent with SL(2,Z)-invariance and
perturbation theory!
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The SL(2,7) Borel transform

« |t is often the case the ./ = 4 SYM observables have Borel-summable perturbative series:

Oy(y) & z (= }"{'”'v‘:. (¢, =—n(n+ DA+ 1/2)f(n + 1))
n=1|

e.g. suppose ¢, ~ (7R)™"'n!

« Convenient to define the “SL.(2,7) Borel transform”:

00 — Y
B[&] = Z ﬁﬁ”“ (radius of convergence R)
n -

n=0

« The resummation of the perturbative series is neatly obtained by inverting this transform:

v O,(y8) - |
@{}(_\‘)Z}'HEJ ;f( pkis) )B[dj]
0 %"
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The SL(2,7) Borel transform

« When (O, ¢,) = 0, can reconstruct O(7) from O(y) in an elegant way

« Sum the resummation of the perturbative series over SL(2,7) images:

|
6@ == ), Om(D)

rePSL(2,2) Z

e Z Jmﬁmgl ex (
"4 s B "

(mmeZ?

g

y

3 ]
|mr+n|“)

« Thus there is a lattice integral representation for rather general* CFT observables

« The kernel is the SL(2,7) Borel transform of the zeromode!
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The redundancy of instantons gl &

« If the Borel transform of the perturbative series of @(y) has radius of

convergence R, then that of the k > 0 instanton sectors is also Borel
summable with radius of convergence:

k 2
R

» SL(2,7) relates all instanton sectors in a simple way

Violation of this can be taken as a sharp signal that (O, ¢,) # 0

Pirsa: 22030031 Page 24/39



14:35 Tue Mar 15 sem ] P&! A

M

4. Large-N and the 't Hooft limit

* We will mostly be concerned with the 't Hooft limit

2

_ 4nN _
N — oo, with A = Ngy, = — held fixed
};

« The perturbative 1/N expansion organizes into a genus expansion

(e ]
@(}(.}!} — Z Nz-z‘f“@&m{ﬂ) (k-instantons are non-perturbatively suppressed ~ ¢ “""I"""""’}

e=()

- We then consider the 1/N expansion of the spectral overlaps (setj']'lp(.s'} = () for now):

T

. & # B 1 d‘f -y I P { o
O4y) = (O) + ) N? “[2— ——s(1 = H(ASA™ + A(l = NZ4) f8(1 = 8)
2=0 Jt sIn s
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Large-/V and the ’t Hooft limit

« At the end of the day, one finds the following for the general form of the weak-coupling

(A <« 1) expansion:

[+ ]

&=0

o0

Oey) » D N2 Y

m=1

(g)
R I

— -

/] m
b

« While at strong coupling (4 > 1) we have:

®

where R'*! = Res__, (L\'{l - HAE)EA - w]l)
' m REL RN U] i R . S p J
: 51N 78

g=0

1 Q2
O) & CN) == Y N2

[~ 9]

))

ni=|

y e = e
R(.Ll ’Z m T 4+ N umim 3

m
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I [x] il
where C(N) = {(0) — = Z NI—_:\:]J-IEH{”}

Needed for renormalization of 1//N expansion at strong-coupling
(stringy regularization of loop divergences in sugra)
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Non-perturbative effects implied by SL(2,7) 3 ?‘f -

= A surprising consequence of modular invariance:

- Convergence of the weak-coupling expansion of (7) implies non-perturbative effects
both at N > | and at strong coupling (at fixed orders in the genus expansion)

- The non-perturbative scale is set by the radius of convergence | 4| < A. of the weak-
coupling expansion

» InA =48YM, A. = x*is generic.
This implies the non-perturbative scales f\f. and /\i (for A > 1 and Ag > | respectively):

- =2=T b
A, =e VA = ¢~ 4"p . . (47N )*
wnere A¢ =
) S 3
f\ — CJ_\.f'TS _.‘)‘T'llll A

1 = -
Ay €

is an S-dual 't Hooft coupling

+« Worldsheet instanton effects

[Bargheer Coronado Vieira 2019
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Non-perturbative effects implied by SL(2,7)

* A surprising consequence of modular invariance:

- Convergence of the weak-coupling expansion of (J(7) implies non-perturbative effects
both at NV >> | and at strong coupling (at fixed orders in the genus expansion)

- The non-perturbative scale is set by the radius of convergence | 4| < A. of the weak-
coupling expansion

¢« In AN =48SYM, 1. = n’is generic.
This implies the non-perturbative scales Af and Ai (for 1> 1 and Ag > | respectively):
A). — (3_‘\”’]‘ = [,—2.1'!'?-].[ {4}”\‘!)2

_, where A = ——— is an S-dual 't Hooft coupling
A_ — (‘J_‘\JXZ —] c)_z'rr'llli A

A%
+« Worldsheet instanton effects

[Bargheer Coronado Vieira 201 °.
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Allowing for instanton-anti-instanton effects

« Essentially the exact same structure persists for f;.]p(s) # 0.

- one lesson: at strong-coupling, integer powers of 1/4 @_fr']p(.s') =)

» At the end of the day, the strong-coupling expansion is slightly modified

o0 o0
m+ 3

@[)(y) ~ C(N) - Z NZ—?,{,’ Z (a};i;')i— 5 o bEf)N—Z—Qmﬁum)

m

g=0 m=0

where a4’ and b%®’ are computable residues.

m m
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5. Supergravity as an emergent ensemble average

+ The general expression for the strong-coupling expansion has striking consequences

- Given the large-/N expansion of the average (turning f,,,

() off for clarity):

(0) = %Z N”*‘( o+ N-’.f;,-‘”co))
r=()

—

(ON)=1f#1)

« Then the large-N limit of the average is the only term that survives the strong-

coupling limit:
o0 o0 \ [
5 o JE P (o Y i ' oA i
Op(y) & Z N3-2 (((){"“J»“ E (aff;}ﬂ =7 4 bfa(:‘ IN mﬂm+_)
g=0 m=()
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Supergravity as an emergent ensemble average

 In other words, we have arrived at a large-N eqguivalence between strong
coupling and ensemble averaging in //* = 4 SYM:

(@)!=(5(/1—>00)=@

sugra

VA

(4 — o0) (N = )
» This extends to all loop orders:

0P~ ) = ((09))
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Supergravity as an emergent ensemble average

« Obviously, the traditional holographic paradigm is left entirely intact

» Only the strongly-coupled theory at large N, dual to bulk supergravity,
emerges as an ensemble average
- As in low-dimension dualities, averaging generates a simple (extremal)
bulk dual

» Perhaps there are scenarios where the average can be studied more easily
than the strongly-coupled observable
(cf. averaged spectral gap at large central charge in Narain ensemble
average [Afkhami-Jeddi Cohn Hartman Tajdini 2020))

* Immediate corollary:

- Any observable that diverges as A — ©o cannot be modular invariant (e.g.
Konishi anomalous dimension)
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6. Statistics of the S1.(2,7) ensemble

* We are thus motivated to study the statistics of CFT observables in the SL(2,Z) ensemble

+ We have seen that the spectral decomposition cleanly picks out the ensemble average

O(r) =(O)+ O__..(1)

“spec

(0 pec)=0

+ e.g. the variance is straightforwardly computed in terms of the spectral overlaps:

7'(0) = (6%) — (6)*
= (Orec)
J N “Second moment in spectral space
vol(F)~! J ; | (O,E) |2 + Z (O, ¢',b”]|2
1 STl

Re s== n=l
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The variance at large N

» At large NV, the variance is parametrically suppressed compared to the
mean-squared (but still puzzlingly large): -

7(0) 1

Pyl —

(6> N

« Moreover, the 1/N expansion is quadruple-factorially divergent, leading
to non-perturbative effects in powers of A%, where
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7. Wormholes in moduli space & emergent
averaged holography

« Our results are especially interesting in light of recent developments in low-
dimensional quantum gravity

- 2d: JT gravity «— double-scaled random matrix integral [Saad Shenker Stanford 2019]

- 3d: exotic “U(1) gravity” «— averaged Narain lattice CFT [Maloney Witten; Afkhami-
Jeddi Cohn Hartman Tajdini 2020]

» Spacetime wormholes play an important role in these dualities

» Leads to some natural questions in conventional holographic dualities:

- What (other) bulk ingredients are needed for factorization of multi-boundary
observables? [Saad Shenker Stanford Yao; Blommaert Kruthoff; Blommaert lliesiu Kruthoff 2021)

- In a product of observables in two decoupled CFTs, why are there contributions
that appear to correlate them? (When and how do they appear?)
Where are wormholes in the bootstrap?

Pirsa: 22030031

Page 35/39



14:57 Tue Mar 16 1] = 71% l ‘ﬂl &

M

Wormholes in moduli space

« The large-N equivalence (O) = O
ensemble statistics

suggests a gravitational manifestation of SL(2,7)

sugra

- How much does semiclassical AdS; X S° string theory “know” about them?

* Note: we are not trying to argue that wormholes dominate multi-boundary observables in
semiclassical AdS; X S (they don't, in general)

- But rather, attempting to address whether and why wormholes may appear as part of the
(unaveraged) semiclassical bulk theory (and how they do so consistently with UV completeness)

M M

Nwml
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Wormholes in moduli space

* Qur results resonate with recent work on factorization in low-dimensional

models of quantum gravity [Saad Shenker Stanford Yao; Blommaert Kruthoff;
Mukhametzhanov; Blommaert lliesiu Kruthoff 2021]

6() = (0) + Ji(@, EJE(D)+ Y (6.4,)4,()
—_ A i

=]
i3 n

sugri

6. () "half-wormhole"

spec

« To probe ensemble statistics, consider higher powers of @SPCC(T):

3 ds 2 - 3 ds . - 3
Opec(®)? = VOUF)™! “4_; I(G,E)|* + Z (0, f,f;,,;--] + [}%{(@ﬁw E)E(t) + Z (O cer h)b,(7)

n=l n=|\

7(0): "wormhole" coupling-dependent fluctuations around 7°(#)
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Wormholes in moduli space

« We have not identified the bulk configurations/stringy degrees of freedom that
give the noisy contributions responsible for factorization for any particular

observable

» Rather, we have shown concretely how ensemble statistics (& correspondingly
connected bulk configurations) can play a role even in a fixed instance of /" = 4
SYM

- Meaningful holographically because (O) = O,
- Does the variance have a spacetime wormhole interpretation in semiclassical
gravity? Does the answer depend on the type of observable? [Schlenker Witten 2022]
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Future directions e

* Obvious, urgent question: to what extent does this story generalize to other string/M-theory
vacua?

- Automorphic averages over U-duality groups? Ensemble averages over conformal
manifolds? Over all directions in moduli space, or just the “gravity direction™?

* Other observables (and other S-duality groups):
- Other integrated correlators, e.g. (22pp)

- Ambitiously: unintegrated correlators
- Observables particularly sensitive to statistics of high-energy states (thermal observables?)

- Extremal correlators (@P?’fp) in4d /4 = 2 SQCD

* Better understand worldsheet and spacetime perspectives on non-Borel summability of
AdSs5 X §? string theory and the semiclassical bulk meaning of the variance

* “Bootstrapping in spectral space”

» Statistics of CFT data over conformal manifolds (cf. [Afkhami-Jeddi Ashmore Cordova 2021))

« Cusp forms and arithmetic chaos in ./ = 4 SYM
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