Title: Harnessing S-duality in N=4 SYM and supergravity as SL(2,Z)-averaged strings
Speakers: Scott Collier
Series: Quantum Fields and Strings
Date: March 15, 2022 -2:00 PM
URL: https://pirsa.org/22030031
Abstract: I will describe an approach to extracting the physical consequences of S-duality of four-dimensional $\mathrm{N}=4$ super Yang-Mills (SYM) and its string theory dual based on $\operatorname{SL}(2, Z)$ spectral theory. I will show that processing S-duality in this way leads to strong consequences for the CFT data, both perturbatively and non-perturbatively in all parameters. In large-N limits, I will argue for the existence and scaling of non-perturbative effects, both at large N and at strong 't Hooft coupling. An elegant benchmark for these techniques is a certain integrated stress-tensor multiplet four-point function, whose form I will elucidate. I will explain how the ensemble average of CFT observables over the $\mathrm{N}=4$ supersymmetric conformal manifold with respect to the Zamolodchikov measure is cleanly isolated by the spectral decomposition, and will show that the large-N limit of the ensemble average is equal to the strong-coupling limit of the observable in the planar theory, which is its value in type IIB supergravity on AdS_5 x $\mathrm{S}^{\wedge} 5$. This embeds an emergent averaged holographic duality within the conventional holographic paradigm.

Zoom link: https://pitp.zoom.us/j/95197874062?pwd=QU4vbXNNeFVmS0hNbTVLL24wdDBndz09

Harnessing S-duality in $\mathcal{N}=4$ SYM \& supergravity as $S L(2, \mathbb{Z})$-averaged strings

Scott Collier
Princeton PCTS
Perimeter Institute 2022/03/15

Motivating remarks

- In practice, very little concrete information about the modular structure of CFT observables $\mathcal{O}(\tau)$ is known to complement perturbation theory

Idea: Bake in modular invariance at the outset. Reduce CFT observables to their dynamical content and systematically explore the consequences of S-duality.

- Facilitated by a robust $S L(2, \mathbb{Z})$ spectral theory
- Simple calculations yield a wealth of insights into the structure of perturbation theory and of the instanton expansion
- Structure is especially rigid at large N in the 't Hooft limit with $\lambda \equiv N g_{\mathrm{YM}}^{2}$ held fixed
- $S L(2, \mathbb{Z})$ invariance implies the existence of non-perturbative effects at large N and at strong coupling ($\lambda \gg 1$)
14:06 Tue Mar 15

Motivating remarks

- At strong coupling $(\lambda \gg 1) \mathscr{N}=4$ SYM is famously dual to type IIB supergravity on $\mathrm{AdS}_{5} \times S^{5}$, with a prescribed set of stringy α^{\prime} corrections
- Remarkably, S-duality has something to say about this:

The large- N limit of ensemble averaged $\mathcal{N}=4$ SYM is the strongcoupling limit of the planar theory, i.e. $\mathrm{AdS}_{5} \times S^{5}$ supergravity

- An emergent averaged holographic duality within string theory
14:08 Tue Mar 15
<0

Outline

1. $\operatorname{SL}(2, \mathbb{Z})$ spectral theory for $\mathcal{N}=4$ SYM observables
2. Example: integrated stress-tensor multiplet four-point function
3. Perturbation theory and the analytic structure of spectral overlaps
4. Large- N and the 't Hooft limit
5. Supergravity as an emergent ensemble average
6. Statistics of the " $\operatorname{SL}(2, \mathbb{Z})$ ensemble"
7. Remarks on AdS/CFT and wormholes

${ }^{14090}$ Tue Mer 15		\cdots		- \% 6 84\%
< へ	5	T $\triangle \otimes \otimes$ Q	0	+ ! [

1. $S L(2, \mathbb{Z})$ spectral theory

The fundamental domain \mathscr{F} of $\operatorname{SL}(2, \mathbb{Z})$:

$$
\begin{gathered}
\mathscr{F}=\left\{\tau=x+i y \in \mathbb{H}\left|-\frac{1}{2} \leq x \leq \frac{1}{2},|\tau| \geq 1\right\}\right. \\
x=\frac{\theta}{2 \pi} \\
y=\frac{4 \pi}{g_{\mathrm{YM}}^{2}}
\end{gathered}
$$

- Natural metric on moduli space:

$$
d s^{2}=\frac{d x^{2}+d y^{2}}{y^{2}}
$$

- Laplacian: $\Delta_{\tau}=-y^{2}\left(\partial_{x}^{2}+\partial_{y}^{2}\right)$

$S L(2, \mathbb{Z})$ spectral theory

- There is a natural inner product on this space:

$$
(f, g)=\int_{\mathscr{F}} \frac{d x d y}{y^{2}} f(\tau) \overline{g(\tau)}
$$

- Basic idea: decompose $\mathcal{O}(\tau)$ into eigenfunctions of Δ_{τ} using this inner product
- This is possible when $\|\mathcal{O}\|^{2}=(\mathcal{O}, \mathcal{O})<\infty$:
- This is generic for $\mathcal{N}=4$ SYM observables $\mathcal{O}(\tau)$ (cusp $\tau \rightarrow i \infty$: free limit)

The complete basis of eigenfunctions of Δ_{τ} splits into three branches:
(1) The constant function:
$\Delta_{\tau} 1=0$
(2) Continuous branch: real analytic Eisenstein series

$$
\Delta_{\tau} E_{s}(\tau)=s(1-s) E_{s}(\tau), \quad s \in \frac{1}{2}+i \mathbb{R}
$$

(3) (Infinite) discrete branch: Maass cusp forms

$$
\Delta_{\tau} \phi_{n}(\tau)=\left(\frac{1}{4}+t_{n}^{2}\right) \phi_{n}(\tau), \quad 0<t_{1}<t_{2}<\ldots
$$

Real analytic Eisenstein series

- Defined via a Poincaré series

$$
E_{s}(\tau)=\sum_{\gamma \in P S L(2, \mathbb{Z}) / \mathbb{Z}} \operatorname{Im}(\gamma \tau)^{s}, \quad \operatorname{Re}(s)>1
$$

- Satisfies the functional equation

$$
E_{s}^{*}(\tau) \equiv \Lambda(s) E_{s}(\tau)=E_{1-s}^{*}(\tau) \quad\left(\Lambda(s) \equiv \pi^{-s} \Gamma(s) \zeta(2 s)=\Lambda(1 / 2-s)\right)
$$

- Admits a meromorphic continuation to the entire complex s plane

$$
E_{s}^{*}(\tau)=\underbrace{\Lambda(s) y^{s}+\Lambda(1-s) y^{1-s}}_{E_{s .0}^{*}(y)}+\sum_{k=1}^{\infty} 2 \cos (2 \pi k x) \underbrace{\frac{2 \sigma_{2 s-1}(k)}{k^{s-\frac{1}{2}}} \sqrt{y} K_{s-\frac{1}{2}}(2 \pi k y)}_{E_{s, k}^{*}(y) \sim c^{-2 \pi k y}}
$$

Maass cusp forms

- The discrete branch is much more wild \& mysterious
- Related to the energy eigenstates of the quantum mechanics of a particle propagating on \mathscr{F}, a classically chaotic system
- Functional form is similar to the continuous branch

$$
\phi_{n}(\tau)=\sum_{k=1}^{\infty} a_{k}^{(n)} \cos (2 \pi k x) \sqrt{y} K_{i t_{n}}(2 \pi k y)
$$

- The eigenvalues $\left\{t_{n}\right\}$ and Fourier coefficients $\left\{a_{k}^{(n)}\right\}$ are sporadic real numbers with very interesting statistics ("arithmetic quantum chaos" [Sarnak])

Spectral decomposition of CFT observables

CFT observables admit a unique decomposition in this basis:

$$
\mathcal{O}(\tau)=\overline{\mathcal{O}}+\int_{\operatorname{Re~} s=\frac{1}{2}} \frac{d s}{4 \pi i}\left(\mathcal{O}, E_{s}\right) E_{s}(\tau)+\sum_{n=1}^{\infty}\left(\mathcal{O}, \phi_{n}\right) \phi_{n}(\tau)
$$

where:
$\overline{\mathcal{O}}=\operatorname{vol}(\mathscr{F})^{-1} \int_{\mathscr{F}} \frac{d x d y}{y^{2}} \mathcal{O}(\tau)=\operatorname{Res}_{s=1}\left(\mathcal{O}, E_{\bar{S}}\right)$ is the modular average
$\left(\mathcal{O}, E_{s}\right)=\int_{\mathscr{F}} \frac{d x d y}{y^{2}} \mathcal{O}(\tau) \overline{E_{s}(\tau)}=\int_{0}^{\infty} \frac{d y}{y^{2}} y^{\bar{s}} \mathcal{O}_{0}(y)$ is a Mellin transform of the zeromode

Spectral decomposition of CFT observables

Consequences:
(1) The overlap $\left(\mathcal{O}, E_{s}\right)$ satisfies a functional equation

$$
\left\{\mathcal{O}, E_{s}\right\} \equiv \frac{\left(\mathcal{O}, E_{s}\right)}{\Lambda(s)}=\left\{\mathcal{O}, E_{1-s}\right\}
$$

(2) The constant term $\overline{\mathcal{O}}$ is the ensemble average over the conformal manifold (wrt the Zamolodchikov measure)
$\langle\mathcal{O}\rangle \equiv \operatorname{vol}(\mathscr{M})^{-1} \int_{\mathscr{M}} \underbrace{d \mu_{\mathscr{M}}}_{\frac{d x d y}{y^{2}}} \mathcal{O}(\tau)=\overline{\mathcal{O}}$ by virtue of maximal SUSY
(3) "Instantons are redundant:" $\mathcal{O}(\tau)=\mathcal{O}_{0}(y)+\sum_{k=1}^{\infty} 2 \cos (2 \pi k x) \mathcal{O}_{k}(y)$

2. Integrated correlator

- "CFT observables:" non-perturbatively well-defined
e.g.: correlators of protected operators, spectrum of the dilatation operator, structure constants
not, e.g.: "anomalous dimension of the Konishi"
- A rare and beautiful example: integrated $\mathcal{O}_{20^{\prime}}$ four-point function of [Binder Chester Pufu Wang 2019]

$$
\begin{aligned}
\mathscr{G}_{N}(\tau) & =\int d u d v \rho(u, v) T_{N}(u, v) \longleftarrow \text { SUSY-preserving measure } \\
& =-\left.\frac{1}{4} \Delta_{\tau} \partial_{m}^{2} \log Z_{N}^{S^{4}}(m, \tau)\right|_{m=0} ^{\longleftarrow} \text { (Dynamical part of) 20' 4-pt function }
\end{aligned}
$$

1423 Tue Mer 75		...		- ₹¢ 80\%ロ
< へ	\bigcirc	$T \ominus Q \otimes Q \odot$	0	+

Integrated correlator

- Remarkably, $\mathscr{G}_{N}(\tau)$ is conjecturally known for all N, τ (!) [Dorigoni Green Wen 2021]

$$
\mathscr{G}_{N}(\tau)=\frac{1}{2} \sum_{(m, n) \in \mathbb{Z}^{2}} \int_{0}^{\infty} d \xi B_{N}(\xi) \exp \left(-\frac{\pi \xi}{y}|m \tau+n|^{2}\right)
$$

- The kernel $B_{N}(\xi)$ is determined by recursion from $N=2$ via a Laplace difference equation satisfied by $\mathscr{G}_{N}(\tau)$
- Another useful representation
$\mathscr{G}_{N}(\tau)=\frac{N(N-1)}{8}-\frac{1}{2} \sum_{s=2}^{\infty}(-)^{s} C_{s}^{(N)} E_{s}^{*}(\tau)$
e.g. for $S U(2), c_{s}^{(2)}=s(1-s)(2 s-1)^{2}$
Integrated correlator
- We claim that this integrated correlator is given exactly by the following spectral decomposition

$$
\mathscr{G}_{N}(\tau)=\underbrace{\frac{N(N-1)}{4}}_{\left\langle\mathscr{G}_{N}\right\rangle}+\int_{\operatorname{Re} s=\frac{1}{2}} \frac{d s}{4 \pi i} \underbrace{\frac{\pi}{\sin \pi s} c_{s}^{(N)} E_{s}^{*}(\tau)}_{\left\{\mathscr{G}_{N}, E_{s}\right\}}
$$

- In particular: $\left(\mathscr{G}_{N}, \phi_{n}\right)=0$

3. Perturbation theory and the analytic structure of spectral overlaps

- Consistency of the weak-coupling $(y \gg 1)$ expansion constrains $\left(\mathcal{O}, E_{s}\right)$ (recall: $y=4 \pi / g_{\mathrm{YM}}^{2}$)
$\mathcal{O}_{0}(y)=\langle\mathcal{O}\rangle+\int_{\operatorname{Re} s=\frac{1}{2}} \frac{d s}{4 \pi i}\left\{\mathcal{O}, E_{s}\right\}\left(\Lambda(s) y^{s}+\Lambda(1-s) y^{1-s}\right)$
- Perturbation theory: upon contour deformation, only non-negative integer powers of y, no logarithms
- Large- $|s|$ asymptotics of $\left\{\mathcal{O}, E_{s}\right\}$ encodes asymptotics of perturbation theory
Perturbation theory and the analytic structure of
spectral overlaps
- Claim: the most general $\left\{\mathcal{O}, E_{s}\right\}$ consistent with perturbation theory takes the form

$$
\left\{\mathcal{O}, E_{s}\right\}=\underbrace{\frac{\pi}{\sin \pi s} s(1-s) f_{\mathrm{p}}(s)}_{\text {perturbative } \sim y^{-n}}+\underbrace{f_{\mathrm{np}}(s)}_{\text {non-perturbative } \sim(q \bar{q})^{n}}
$$

where both $f_{\mathrm{p}}(s), f_{\mathrm{np}}(s)$ are:

- symmetric under reflection $s \rightarrow 1-s$
- regular for $s \in \mathbb{C}$ away from $s=0,1$
- such that $\left\{\mathcal{O}, E_{s}\right\}=0$ for $s=1 / 2$

The optimal simplicity of $\mathscr{G}_{2}(\tau)$

Recall the $S U(2)$ integrated correlator $\mathscr{G}_{2}(\tau)$:

$$
\begin{aligned}
\left(\mathscr{G}_{2}, \phi_{n}\right) & =0 \\
f_{\mathrm{np}}(s) & =0 \\
f_{\mathrm{p}}(s) & =(2 s-1)^{2}
\end{aligned}
$$

An optimally simple observable consistent with $S L(2, \mathbb{Z})$-invariance and perturbation theory!

The $S L(2, \mathbb{Z})$ Borel transform

- It is often the case the $\mathcal{N}=4$ SYM observables have Borel-summable perturbative series:

$$
\begin{aligned}
& \mathcal{O}_{0}(y) \approx \sum_{n=1}^{\infty}(-)^{n} c_{n} y^{-n}, \quad\left(c_{n}=-n(n+1) \Lambda(n+1 / 2) f_{p}(n+1)\right) \\
& \text { e.g. suppose } c_{n} \sim(\pi R)^{-n} n!
\end{aligned}
$$

- Convenient to define the "SL(2,Z) Borel transform":
$B[\xi]=\sum_{n=0}^{\infty} \frac{(-)^{n} c_{n}}{\Lambda\left(n+\frac{1}{2}\right)} \xi^{n+1}$ (radius of convergence R)
- The resummation of the perturbative series is neatly obtained by inverting this transform:

$$
\mathcal{O}_{0}(y)=y^{1 / 2} \int_{0}^{\infty} \frac{d \xi}{\xi^{3 / 2}}\left(\frac{\theta_{3}(y \xi)-1}{2}\right) B[\xi]
$$

${ }^{14,32}$ Tomemer 15		...		- 0 ¢ 78% -
< ¢	5	T $\triangle \otimes \otimes Q \otimes$	Q	+

The $S L(2, \mathbb{Z})$ Borel transform

- When $\left(\mathcal{O}, \phi_{n}\right)=0$, can reconstruct $\mathcal{O}(\tau)$ from $\mathcal{O}_{0}(y)$ in an elegant way
- Sum the resummation of the perturbative series over $\operatorname{SL}(2, \mathbb{Z})$ images:

$$
\begin{aligned}
\mathcal{O}(\tau) & =\frac{1}{2} \sum_{\gamma \in \operatorname{SSL}(2, \mathbb{Z}) / \mathbb{Z}} \mathcal{O}_{0}(\operatorname{Im}(\gamma \tau)) \\
& =\frac{1}{4} \sum_{(m, n) \in \mathbb{Z}^{2}} \int_{0}^{\infty} \frac{d \xi}{\xi} B[\xi] \exp \left(-\frac{\pi \xi}{y}|m \tau+n|^{2}\right)
\end{aligned}
$$

- Thus there is a lattice integral representation for rather general ${ }^{\star}$ CFT observables
- The kernel is the $S L(2, \mathbb{Z})$ Borel transform of the zeromode!

The redundancy of instantons

- If the Borel transform of the perturbative series of $\mathcal{O}_{0}(y)$ has radius of convergence R, then that of the $k>0$ instanton sectors is also Borel summable with radius of convergence:

$$
R_{k}=R\left(1+\frac{k}{R}\right)^{2}
$$

- $S L(2, \mathbb{Z})$ relates all instanton sectors in a simple way
- Violation of this can be taken as a sharp signal that $\left(\mathcal{O}, \phi_{n}\right) \neq 0$

14:35 Tue Mar 15

- We will mostly be concerned with the 't Hooft limit

$$
N \rightarrow \infty, \text { with } \lambda=N g_{\mathrm{YM}}^{2}=\frac{4 \pi N}{y} \text { held fixed }
$$

- The perturbative $1 / N$ expansion organizes into a genus expansion

$$
\mathcal{O}_{0}(y)=\sum_{g=0}^{\infty} N^{2-2 g} \mathcal{O}_{0}^{(g)}(\lambda) \quad\left(k \text {-instantons are non-perturbatively suppressed } \sim e^{\left.-8 \pi^{2} k N / \lambda\right)}\right.
$$

- We then consider the $1 / N$ expansion of the spectral overlaps (set $f_{\text {np }}(s)=0$ for now):

$$
\mathcal{O}_{0}(y)=\langle\mathcal{O}\rangle+\sum_{g=0}^{\infty} N^{2-2 g} \int \frac{d s}{2 \pi i} \frac{\pi}{\sin \pi s} s(1-s)\left(\Lambda(s) \lambda^{-s}+\Lambda(1-s) N^{1-2 s} \lambda^{s-1}\right) f_{\mathrm{p}}^{(g)}(1-s)
$$

Large- N and the ' t Hooft limit

- At the end of the day, one finds the following for the general form of the weak-coupling $(\lambda \ll 1)$ expansion:

$$
\mathcal{O}_{0}(y) \approx \sum_{g=0}^{\infty} N^{2-2 g} \sum_{m=1}^{\infty} \mathrm{R}_{-m-\frac{1}{2}}^{(g)} \lambda^{m}, \text { where } \mathrm{R}_{m}^{(g)}=\operatorname{Res}_{s=\frac{1}{2}+m}\left(\frac{\pi}{\sin \pi s} s(1-s) \Lambda(s) f_{\mathrm{p}}^{(g)}(1-s)\right)
$$

- While at strong coupling $(\lambda \gg 1)$ we have:

$$
\mathcal{O}_{0}(y) \approx \mathrm{C}(N)-\frac{1}{2} \sum_{g=0}^{\infty} N^{2-2 g} \sum_{m=1}^{\infty} \mathrm{R}_{m}^{(g)}\left(\lambda^{-m-\frac{1}{2}}+\frac{\Lambda\left(\frac{1}{2}-m\right)}{\Lambda\left(\frac{1}{2}+m\right)} N^{-2 m} \lambda^{m-\frac{1}{2}}\right)
$$

where $\mathrm{C}(N)=\langle\mathcal{O}\rangle-\frac{1}{2} \sum_{g=0}^{\infty} N^{1-2 g} f_{\mathrm{p}}^{(g)}(0)$
14:42 Tue Mar 15
4

Non-perturbative effects implied by $S L(2, \mathbb{Z})$

- A surprising consequence of modular invariance:
- Convergence of the weak-coupling expansion of $\mathcal{O}(\tau)$ implies non-perturbative effects both at $N \gg 1$ and at strong coupling (at fixed orders in the genus expansion)
- The non-perturbative scale is set by the radius of convergence $|\lambda|<\lambda_{*}$ of the weakcoupling expansion
- $\ln \mathcal{N}=4 \mathrm{SYM}, \lambda_{*}=\pi^{2}$ is generic.

This implies the non-perturbative scales Λ_{λ}^{2} and $\Lambda_{\lambda_{\mathrm{S}}}^{2}$ (for $\lambda \gg 1$ and $\lambda_{\mathrm{S}} \gg 1$ respectively):
$\left\{\begin{array}{l}\Lambda_{\lambda}=e^{-\sqrt{\lambda}}=e^{-2 \pi T_{\mathrm{Fl}}} \\ \Lambda_{\lambda_{\mathrm{S}}}=e^{-\sqrt{\lambda_{\mathrm{S}}}}=e^{-2 \pi T_{\mathrm{DI}}}\end{array}\right.$, where $\lambda_{\mathrm{S}}=\frac{(4 \pi N)^{2}}{\lambda}$ is an S-dual 't Hooft coupling

- Worldsheet instanton effects

Non-perturbative effects implied by $S L(2, \mathbb{Z})$

- A surprising consequence of modular invariance:
- Convergence of the weak-coupling expansion of $\mathcal{O}(\tau)$ implies non-perturbative effects both at $N \gg 1$ and at strong coupling (at fixed orders in the genus expansion)
- The non-perturbative scale is set by the radius of convergence $|\lambda|<\lambda_{*}$ of the weakcoupling expansion
- $\ln \mathcal{N}=4 \mathrm{SYM}, \lambda_{*}=\pi^{2}$ is generic.

This implies the non-perturbative scales Λ_{λ}^{2} and $\Lambda_{\lambda_{\mathrm{S}}}^{2}$ (for $\lambda \gg 1$ and $\lambda_{\mathrm{S}} \gg 1$ respectively):
$\left\{\begin{array}{l}\Lambda_{\lambda}=e^{-\sqrt{\lambda}}=e^{-2 \pi T_{\mathrm{Fl}}} \\ \Lambda_{\lambda_{\mathrm{S}}}=e^{-\sqrt{\lambda_{\mathrm{S}}}}=e^{-2 \pi T_{\mathrm{DI}}}\end{array}\right.$, where $\lambda_{\mathrm{S}}=\frac{(4 \pi N)^{2}}{\lambda}$ is an S-dual 't Hooft coupling

- Worldsheet instanton effects

Allowing for instanton-anti-instanton effects

- Essentially the exact same structure persists for $f_{\mathrm{np}}(s) \neq 0$.
- one lesson: at strong-coupling, integer powers of $1 / \lambda \Leftrightarrow f_{\text {np }}(s) \neq 0$
- At the end of the day, the strong-coupling expansion is slightly modified

$$
\mathcal{O}_{0}(y) \approx \mathrm{C}(N)-\sum_{g=0}^{\infty} N^{2-2 g} \sum_{m=0}^{\infty}\left(\mathrm{a}_{m}^{(g)} \lambda^{-\frac{m+3}{2}}+\mathrm{b}_{\alpha_{m}}^{(g)} N^{-2-2 m} \lambda^{\alpha_{m}}\right)
$$

where $\mathrm{a}_{m}^{(g)}$ and $\mathrm{b}_{m}^{(g)}$ are computable residues.

- The general expression for the strong-coupling expansion has striking consequences
- Given the large- N expansion of the average (turning $f_{\mathrm{np}}(s)$ off for clarity):

$$
\langle\mathcal{O}\rangle=\frac{1}{2} \sum_{g=0}^{\infty} N^{2-2 g}(\underbrace{f_{\mathrm{p}}^{(g)}(1)}_{\left\langle\left\langle\sigma^{(s)}\right\rangle\right\rangle \equiv \frac{1}{2} f_{\mathrm{p}}^{(g)}(1)}+N^{-1} f_{\mathrm{p}}^{(g)}(0))
$$

- Then the large- N limit of the average is the only term that survives the strongcoupling limit:

$$
\mathcal{O}_{0}(y) \approx \sum_{g=0}^{\infty} N^{2-2 g}\left[\left\langle\left\langle\mathcal{O}^{(g)}\right\rangle\right\rangle-\sum_{m=0}^{\infty}\left(\mathrm{a}_{m}^{(g)} \lambda^{-m-\frac{3}{2}}+\mathrm{b}_{m}^{(g)} N^{-2-2 m} \lambda^{m+\frac{1}{2}}\right)\right]
$$

Supergravity as an emergent ensemble average

- In other words, we have arrived at a large- N equivalence between strong coupling and ensemble averaging in $\mathcal{N}=4$ SYM:

- This extends to all loop orders:

$$
\mathcal{O}_{0}^{(g)}(\lambda \rightarrow \infty)=\left\langle\left\langle\mathcal{O}^{(g)}\right\rangle\right\rangle
$$

6. Statistics of the $\operatorname{SL}(2, \mathbb{Z})$ ensemble

- We are thus motivated to study the statistics of CFT observables in the $\operatorname{SL}(2, \mathbb{Z})$ ensemble
- We have seen that the spectral decomposition cleanly picks out the ensemble average

$$
\mathcal{O}(\tau)=\langle\mathcal{O}\rangle+\underbrace{\mathcal{O}_{\text {spec }}(\tau)}_{\left\langle\mathcal{O}_{\text {spec }}\right\rangle=0}
$$

- e.g. the variance is straightforwardly computed in terms of the spectral overlaps:

$$
\begin{aligned}
\mathscr{V}(\mathcal{O}) & =\left\langle\mathcal{O}^{2}\right\rangle-\langle\mathcal{O}\rangle^{2} \\
& =\left\langle\mathcal{O}_{\text {spec }}^{2}\right\rangle \\
& =\operatorname{vol}(\mathscr{F})^{-1}\left[\int_{\operatorname{Re} s=\frac{1}{2}} \frac{d s}{4 \pi i}\left|\left(\mathcal{O}, E_{s}\right)\right|^{2}+\sum_{n=1}^{\infty}\left(\mathcal{O}, \phi_{n}\right)^{2}\right]
\end{aligned}
$$

The variance at large N

- At large N, the variance is parametrically suppressed compared to the mean-squared (but still puzzlingly large):
$\frac{\mathscr{V}(\mathcal{O})}{\langle\mathcal{O}\rangle^{2}} \sim \frac{1}{N}$

$$
\left(N^{2} \sim \frac{1}{G_{\mathrm{N}}}\right)
$$

- Moreover, the $1 / N$ expansion is quadruple-factorially divergent, leading to non-perturbative effects in powers of Λ_{N}^{2}, where
$\Lambda_{N} \equiv e^{-4 \sqrt{\pi N}}$

- Our results are especially interesting in light of recent developments in lowdimensional quantum gravity
- 2d: JT gravity \longleftrightarrow double-scaled random matrix integral [Saad Shenker Stanford 2019]
- 3d: exotic " $U(1)$ gravity" \longleftrightarrow averaged Narain lattice CFT [Maloney Witten; AfkhamiJeddi Cohn Hartman Tajdini 2020]
- Spacetime wormholes play an important role in these dualities
- Leads to some natural questions in conventional holographic dualities:
- What (other) bulk ingredients are needed for factorization of multi-boundary observables? [Saad Shenker Stanford Yao; Blommaert Kruthoff; Blommaert lliesiu Kruthoff 2021]
- In a product of observables in two decoupled CFTs, why are there contributions that appear to correlate them? (When and how do they appear?) Where are wormholes in the bootstrap?

Wormholes in moduli space

- Our results resonate with recent work on factorization in low-dimensional models of quantum gravity [Saad Shenker Stanford Yao; Blommaert Kruthoff; Mukhametzhanov; Blommaert lliesiu Kruthoff 2021]

$$
\mathcal{O}(\tau)=\underbrace{\langle\mathcal{O}\rangle}_{\sim \mathcal{O}_{\text {sugra }}}+\underbrace{\int \frac{d s}{4 \pi i}\left(\mathcal{O}, E_{s}\right) E_{s}(\tau)+\sum_{n=1}^{\infty}\left(\mathcal{O}, \phi_{n}\right) \phi_{n}(\tau)}_{\mathcal{O}_{\text {spec }}(\tau): \text { "half-wormhole" }}
$$

- To probe ensemble statistics, consider higher powers of $\mathcal{O}_{\text {spec }}(\tau)$:

$$
\mathcal{O}_{\text {spec }}(\tau)^{2}=\underbrace{\operatorname{vol}(\mathscr{F})^{-1}\left[\int \frac{d s}{4 \pi i}\left|\left(\mathcal{O}, E_{s}\right)\right|^{2}+\sum_{n=1}^{\infty}\left(\mathcal{O}, \phi_{n}\right)^{2}\right]}_{\mathscr{V}(\mathcal{O}): \text { "wormhole" }}+\underbrace{\int \frac{d s}{4 \pi i}\left(\mathcal{O}_{\text {spec }}^{2}, E_{s}\right) E_{s}(\tau)+\sum_{n=1}^{\infty}\left(\mathcal{O}_{\text {spec }}^{2}, \phi_{n}\right) \phi_{n}(\tau)}_{\text {coupling-dependent fluctuations around } \mathscr{V}(\mathcal{O})}
$$

Wormholes in moduli space

- We have not identified the bulk configurations/stringy degrees of freedom that give the noisy contributions responsible for factorization for any particular observable

- Rather, we have shown concretely how ensemble statistics (\& correspondingly connected bulk configurations) can play a role even in a fixed instance of $\mathcal{N}=4$ SYM
- Meaningful holographically because $\langle\mathcal{O}\rangle=\mathcal{O}_{\text {sugra }}$
- Does the variance have a spacetime wormhole interpretation in semiclassical gravity? Does the answer depend on the type of observable? [Schlenker Witten 2022]

