Title: Harnessing S-duality in N=4 SYM and supergravity as SL(2,Z)-averaged strings

Speakers: Scott Collier

Series: Quantum Fields and Strings

Date: March 15, 2022 - 2:00 PM

URL: https://pirsa.org/22030031

Abstract: I will describe an approach to extracting the physical consequences of S-duality of four-dimensional N=4 super Yang-Mills (SYM) and its string theory dual based on SL(2,Z) spectral theory. I will show that processing S-duality in this way leads to strong consequences for the CFT data, both perturbatively and non-perturbatively in all parameters. In large-N limits, I will argue for the existence and scaling of non-perturbative effects, both at large N and at strong 't Hooft coupling. An elegant benchmark for these techniques is a certain integrated stress-tensor multiplet four-point function, whose form I will elucidate. I will explain how the ensemble average of CFT observables over the N=4 supersymmetric conformal manifold with respect to the Zamolodchikov measure is cleanly isolated by the spectral decomposition, and will show that the large-N limit of the ensemble average is equal to the strong-coupling limit of the observable in the planar theory, which is its value in type IIB supergravity on $AdS_5 \times S^5$. This embeds an emergent averaged holographic duality within the conventional holographic paradigm.

Zoom link: https://pitp.zoom.us/j/95197874062?pwd=QU4vbXNNeFVmS0hNbTVLL24wdDBndz09

Pirsa: 22030031 Page 1/39

Pirsa: 22030031 Page 2/39

Motivating remarks

- $\mathcal{N}=4$ SYM is a beautiful theory from a multitude of perspectives
 - Maximal SUSY ⇒ rigid structure of CFT data
 - Approaches: perturbation theory, bootstrap, localization, integrability
 - Via AdS/CFT, it furnishes our most robust and explicit definition of non-perturbative quantum gravity
- · It enjoys S-duality [Montenen, Olive; Witten, Olive; Osborn; Sen]:
 - Local CFT observables $\mathcal{O}(\tau)$ are invariant under $SL(2,\mathbb{Z})$ transformations: $\mathcal{O}(\tau) = \mathcal{O}(\gamma\tau)$
 - An inherently non-perturbative duality; obscured in the 't Hooft limit
 - A symmetry that has not been fully used!

$$\tau = \frac{\theta}{2\pi} + \frac{4\pi i}{g_{YM}^2} \mapsto \gamma \tau = \frac{a\tau + b}{c\tau + d}, \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z})$$

Pirsa: 22030031

Motivating remarks

• In practice, very little concrete information about the **modular structure** of CFT observables $\mathcal{O}(\tau)$ is known to complement perturbation theory

Idea: Bake in modular invariance at the outset.

Reduce CFT observables to their dynamical content and systematically explore the consequences of S-duality.

- Facilitated by a robust $SL(2,\mathbb{Z})$ spectral theory
 - **Simple calculations** yield a wealth of insights into the structure of perturbation theory and of the instanton expansion
- Structure is especially rigid at large N in the 't Hooft limit with $\lambda \equiv Ng_{\rm YM}^2$ held fixed
 - $SL(2,\mathbb{Z})$ invariance implies the existence of non-perturbative effects at large N and at strong coupling $(\lambda \gg 1)$

W

Pirsa: 22030031 Page 5/39

Pirsa: 22030031 Page 6/39

1. $SL(2,\mathbb{Z})$ spectral theory

The fundamental domain \mathscr{F} of $SL(2,\mathbb{Z})$:

$$\mathcal{F} = \left\{ \tau = x + iy \in \mathbb{H} \,\middle|\, -\frac{1}{2} \le x \le \frac{1}{2}, |\tau| \ge 1 \right\}$$

$$x = \frac{\theta}{2\pi}$$
$$y = \frac{4\pi}{g_{YM}^2}$$

Natural metric on moduli space:

$$ds^2 = \frac{dx^2 + dy^2}{y^2}$$

• Laplacian: $\Delta_{\tau} = -y^2(\partial_x^2 + \partial_y^2)$

D

$SL(2,\mathbb{Z})$ spectral theory

• There is a natural inner product on this space:

$$(f,g) = \int_{\mathscr{F}} \frac{dxdy}{y^2} f(\tau) \overline{g(\tau)}$$

- Basic idea: decompose $\mathcal{O}(\tau)$ into eigenfunctions of Δ_τ using this inner product
 - This is possible when $\|\mathcal{O}\|^2 = (\mathcal{O}, \mathcal{O}) < \infty$:
 - This is generic for $\mathcal{N}=4$ SYM observables $\mathcal{O}(\tau)$ (cusp $\tau\to i\infty$: free limit)

Spectral resolution of $\Delta_{ au}$

$$\mathcal{O}(\tau) = \overline{\mathcal{O}} + \int_{\text{Re } s = \frac{1}{2}} \frac{ds}{4\pi i} (\mathcal{O}, E_s) E_s(\tau) + \sum_{n=1}^{\infty} (\mathcal{O}, \phi_n) \phi_n(\tau)$$

The complete basis of eigenfunctions of Δ_{τ} splits into three branches:

(1) The constant function:

$$\Delta_{\tau} 1 = 0$$

(2) Continuous branch: real analytic Eisenstein series

$$\Delta_{\tau} E_s(\tau) = s(1-s)E_s(\tau), \quad s \in \frac{1}{2} + i\mathbb{R}$$

(3) (Infinite) discrete branch: Maass cusp forms

$$\Delta_{\tau} \phi_n(\tau) = \left(\frac{1}{4} + t_n^2\right) \phi_n(\tau), \quad 0 < t_1 < t_2 < \dots$$

Pirsa: 22030031 Page 9/39

oorioo

Real analytic Eisenstein series

Defined via a Poincaré series

$$E_s(\tau) = \sum_{\gamma \in PSL(2,\mathbb{Z})/\mathbb{Z}} \operatorname{Im}(\gamma \tau)^s, \quad \operatorname{Re}(s) > 1$$

· Satisfies the functional equation

$$E_s^*(\tau) \equiv \Lambda(s) E_s(\tau) = E_{1-s}^*(\tau) \qquad \qquad \left(\Lambda(s) \equiv \pi^{-s} \Gamma(s) \zeta(2s) = \Lambda(1/2-s)\right)$$

Admits a meromorphic continuation to the entire complex s plane

$$E_s^*(\tau) = \underbrace{\Lambda(s) y^s + \Lambda(1-s) y^{1-s}}_{E_{s,0}^*(y)} + \sum_{k=1}^{\infty} 2\cos(2\pi kx) \underbrace{\frac{2\sigma_{2s-1}(k)}{k^{s-\frac{1}{2}}} \sqrt{y} K_{s-\frac{1}{2}}(2\pi ky)}_{E_{s,k}^*(y) \sim e^{-2\pi ky}}$$

Maass cusp forms

- The discrete branch is much more wild & mysterious
- Related to the energy eigenstates of the quantum mechanics of a particle propagating on F, a classically chaotic system
- · Functional form is similar to the continuous branch

$$\phi_n(\tau) = \sum_{k=1}^{\infty} a_k^{(n)} \cos(2\pi kx) \sqrt{y} K_{it_n}(2\pi ky)$$

• The eigenvalues $\{t_n\}$ and Fourier coefficients $\{a_k^{(n)}\}$ are sporadic real numbers with very interesting statistics ("arithmetic quantum chaos" [Sarnak])

公

Pirsa: 22030031 Page 12/39

Spectral decomposition of CFT observables

CFT observables admit a unique decomposition in this basis:

$$\mathcal{O}(\tau) = \overline{\mathcal{O}} + \int_{\text{Re } s = \frac{1}{2}} \frac{ds}{4\pi i} (\mathcal{O}, E_s) E_s(\tau) + \sum_{n=1}^{\infty} (\mathcal{O}, \phi_n) \phi_n(\tau)$$

where:

$$\overline{\mathscr{O}} = \operatorname{vol}(\mathscr{F})^{-1} \int_{\mathscr{F}} \frac{dxdy}{y^2} \mathscr{O}(\tau) = \operatorname{Res}_{s=1}(\mathscr{O}, E_{\overline{s}}) \text{ is the modular average}$$

$$(\mathscr{O},E_s) = \int_{\mathscr{F}} \frac{dxdy}{y^2} \mathscr{O}(\tau) \overline{E_s(\tau)} = \int_0^\infty \frac{dy}{y^2} y^{\bar{s}} \mathscr{O}_0(y) \text{ is a Mellin transform of the}$$

zeromode

40

Spectral decomposition of CFT observables

Consequences:

(1) The overlap (\mathcal{O}, E_s) satisfies a functional equation

$$\{\mathcal{O}, E_s\} \equiv \frac{(\mathcal{O}, E_s)}{\Lambda(s)} = \{\mathcal{O}, E_{1-s}\}$$

(2) The constant term $\overline{\mathcal{O}}$ is the **ensemble average** over the conformal manifold (wrt the Zamolodchikov measure)

$$\langle \mathcal{O} \rangle \equiv \operatorname{vol}(\mathcal{M})^{-1} \int_{\mathcal{M}} \underbrace{d\mu_{\mathcal{M}}}_{\frac{dxdy}{y^2}} \mathcal{O}(\tau) = \overline{\mathcal{O}} \text{ by virtue of maximal SUSY}$$

(3) "Instantons are redundant:" $\mathcal{O}(\tau) = \mathcal{O}_0(y) + \sum_{k=1}^{\infty} 2\cos(2\pi kx)\mathcal{O}_k(y)$

Pirsa: 22030031

Pirsa: 22030031 Page 15/39

2. Integrated correlator

"CFT observables:" non-perturbatively well-defined

e.g.: correlators of protected operators, spectrum of the dilatation operator, structure constants

not, e.g.: "anomalous dimension of the Konishi"

- A rare and beautiful example: integrated $\mathcal{O}_{20'}$ four-point function of [Binder Chester Pufu Wang 2019]

$$\mathcal{G}_N(\tau) = \int du dv \, \rho(u,v) T_N(u,v) \qquad \qquad \text{(Dynamical part of) 20' 4-pt function}$$

$$= -\frac{1}{4} \Delta_\tau \, \partial_m^2 \log Z_N^{S^4}(m,\tau) \bigg|_{m=0} \qquad \text{Mass-deformed sphere free energy (localization)}$$

公

Pirsa: 22030031

Integrated correlator

• Remarkably, $\mathcal{G}_N(\tau)$ is conjecturally known for all $N,\, \tau$ (!) [Dorigoni Green Wen 2021]

$$\mathcal{G}_{N}(\tau) = \frac{1}{2} \sum_{(m,n) \in \mathbb{Z}^{2}} \int_{0}^{\infty} d\xi \, B_{N}(\xi) \, \exp\left(-\frac{\pi \xi}{y} |m\tau + n|^{2}\right)$$

- The kernel $B_N(\xi)$ is determined by recursion from N=2 via a Laplace difference equation satisfied by $\mathcal{G}_N(\tau)$
- · Another useful representation

$$\mathscr{G}_{N}(\tau) = \frac{N(N-1)}{8} - \frac{1}{2} \sum_{s=2}^{\infty} (-)^{s} c_{s}^{(N)} E_{s}^{*}(\tau)$$

e.g. for
$$SU(2)$$
, $c_s^{(2)} = s(1-s)(2s-1)^2$

40

Integrated correlator

 We claim that this integrated correlator is given exactly by the following spectral decomposition

$$\mathcal{G}_{N}(\tau) = \frac{N(N-1)}{4} + \int_{\text{Re } s = \frac{1}{2}} \frac{ds}{4\pi i} \frac{\pi}{\sin \pi s} c_{s}^{(N)} E_{s}^{*}(\tau)$$

$$\langle \mathcal{G}_{N} \rangle \qquad \{ \mathcal{G}_{N}, E_{s} \}$$

• In particular: $(\mathcal{G}_N, \phi_n) = 0$

0

Perturbation theory and the analytic structure of spectral overlaps

• Consistency of the weak-coupling $(y\gg 1)$ expansion constrains (\mathcal{O},E_s) (recall: $y=4\pi/g_{YM}^2$)

$$\mathcal{O}_0(y) = \langle \mathcal{O} \rangle + \int_{\text{Re } s = \frac{1}{2}} \frac{ds}{4\pi i} \{ \mathcal{O}, E_s \} (\Lambda(s) y^s + \Lambda(1 - s) y^{1 - s})$$

- Perturbation theory: upon contour deformation, only non-negative integer powers of y, no logarithms
- Large- |s| asymptotics of $\{\mathcal{O}, E_s\}$ encodes asymptotics of perturbation theory

公

Perturbation theory and the analytic structure of spectral overlaps

• Claim: the most general $\{\mathcal{O}, E_s\}$ consistent with perturbation theory takes the form

$$\{\mathcal{O}, E_s\} = \underbrace{\frac{\pi}{\sin \pi s} s(1-s) f_{\mathbf{p}}(s)}_{\text{perturbative} \sim y^{-n}} + \underbrace{f_{\mathbf{np}}(s)}_{\text{non-perturbative} \sim (q\bar{q})^n}$$

where both $f_p(s)$, $f_{np}(s)$ are:

- symmetric under reflection s o 1 s
- regular for $s \in \mathbb{C}$ away from s = 0,1
- such that $\{\mathcal{O}, E_s\} = 0$ for s = 1/2

The optimal simplicity of $\mathcal{G}_2(\tau)$

Recall the SU(2) integrated correlator $\mathcal{G}_2(\tau)$:

$$(\mathcal{G}_2, \phi_n) = 0$$

$$f_{np}(s) = 0$$

$$f_p(s) = (2s - 1)^2$$

An **optimally simple observable** consistent with $SL(2,\mathbb{Z})$ -invariance and perturbation theory!

公

The $SL(2,\mathbb{Z})$ Borel transform

• It is often the case the $\mathcal{N}=4$ SYM observables have **Borel-summable perturbative series**:

$$\mathcal{O}_0(y) \approx \sum_{n=1}^{\infty} (-)^n c_n y^{-n}, \qquad (c_n = -n(n+1)\Lambda(n+1/2) f_p(n+1))$$
 e.g. suppose $c_n \sim (\pi R)^{-n} n!$

Convenient to define the "SL(2,ℤ) Borel transform":

$$B[\xi] = \sum_{n=0}^{\infty} \frac{(-)^n c_n}{\Lambda(n+\frac{1}{2})} \xi^{n+1}$$
 (radius of convergence R)

• The **resummation** of the perturbative series is neatly obtained by inverting this transform:

$$\mathcal{O}_0(y) = y^{1/2} \int_0^\infty \frac{d\xi}{\xi^{3/2}} \left(\frac{\theta_3(y\xi) - 1}{2} \right) B[\xi]$$

40

The $SL(2,\mathbb{Z})$ Borel transform

- When $(\mathcal{O}, \phi_n) = 0$, can reconstruct $\mathcal{O}(\tau)$ from $\mathcal{O}_0(y)$ in an elegant way
- Sum the resummation of the perturbative series over $SL(2,\mathbb{Z})$ images:

$$\mathcal{O}(\tau) = \frac{1}{2} \sum_{\gamma \in PSL(2,\mathbb{Z})/\mathbb{Z}} \mathcal{O}_0(\operatorname{Im}(\gamma \tau))$$

$$= \frac{1}{4} \sum_{(m,n)\in\mathbb{Z}^2} \int_0^\infty \frac{d\xi}{\xi} B[\xi] \exp\left(-\frac{\pi \xi}{y} |m\tau + n|^2\right)$$

- Thus there is a lattice integral representation for rather general* CFT observables
- The kernel is the $SL(2,\mathbb{Z})$ Borel transform of the zeromode!

⊕

40

Pirsa: 22030031

The redundancy of instantons

• If the Borel transform of the perturbative series of $\mathcal{O}_0(y)$ has **radius of** convergence R, then that of the k>0 instanton sectors is also Borel summable with radius of convergence:

$$R_k = R\left(1 + \frac{k}{R}\right)^2$$

- $SL(2,\mathbb{Z})$ relates all instanton sectors in a simple way
- Violation of this can be taken as a sharp signal that $(\mathcal{O}, \phi_n) \neq 0$

W

· We will mostly be concerned with the 't Hooft limit

$$N \to \infty$$
, with $\lambda = Ng_{\rm YM}^2 = \frac{4\pi N}{y}$ held fixed

• The perturbative 1/N expansion organizes into a genus expansion

$$\mathcal{O}_0(y) = \sum_{g=0}^{\infty} N^{2-2g} \mathcal{O}_0^{(g)}(\lambda) \qquad \text{(k-instantons are non-perturbatively suppressed $\sim e^{-8\pi^2 k N/\lambda}$)}$$

- We then consider the 1/N expansion of the spectral overlaps (set $f_{\rm np}(s)=0$ for now):

$$\mathcal{O}_0(y) = \langle \mathcal{O} \rangle + \sum_{g=0}^{\infty} N^{2-2g} \int \frac{ds}{2\pi i} \frac{\pi}{\sin \pi s} s(1-s) \left(\Lambda(s) \lambda^{-s} + \Lambda(1-s) N^{1-2s} \lambda^{s-1} \right) f_{\rm p}^{(g)}(1-s)$$

Large-N and the 't Hooft limit

• At the end of the day, one finds the following for the general form of the **weak-coupling** ($\lambda \ll 1$) expansion:

$$\mathcal{O}_0(y) \approx \sum_{g=0}^{\infty} N^{2-2g} \sum_{m=1}^{\infty} \mathsf{R}^{(g)}_{-m-\frac{1}{2}} \lambda^m \ , \ \text{where} \ \mathsf{R}^{(g)}_m = \mathsf{Res}_{s=\frac{1}{2}+m} \left(\frac{\pi}{\sin \pi s} s(1-s) \Lambda(s) f_{\mathsf{p}}^{(g)}(1-s) \right)$$

• While at strong coupling $(\lambda \gg 1)$ we have:

$$\mathcal{O}_0(y) \approx \mathsf{C}(N) - \frac{1}{2} \sum_{g=0}^{\infty} N^{2-2g} \sum_{m=1}^{\infty} \mathsf{R}_m^{(g)} \left(\lambda^{-m-\frac{1}{2}} + \frac{\Lambda(\frac{1}{2} - m)}{\Lambda(\frac{1}{2} + m)} N^{-2m} \lambda^{m-\frac{1}{2}} \right)$$

where
$$C(N) = \langle \mathcal{O} \rangle - \frac{1}{2} \sum_{p=0}^{\infty} N^{1-2g} f_p^{(g)}(0)$$

Needed for renormalization of 1/N expansion at strong-coupling (stringy regularization of loop divergences in sugra)

40

Non-perturbative effects implied by $SL(2,\mathbb{Z})$

- · A surprising consequence of modular invariance:
 - Convergence of the weak-coupling expansion of $\mathcal{O}(\tau)$ implies non-perturbative effects both at $N\gg 1$ and at strong coupling (at fixed orders in the genus expansion)
 - The **non-perturbative scale** is set by the radius of convergence $|\lambda| < \lambda_*$ of the weak-coupling expansion
- In $\mathcal{N}=4$ SYM, $\lambda_*=\pi^2$ is generic. This implies the non-perturbative scales Λ^2_λ and $\Lambda^2_{\lambda_S}$ (for $\lambda\gg 1$ and $\lambda_S\gg 1$ respectively):

$$\begin{cases} \Lambda_{\lambda} &= e^{-\sqrt{\lambda}} = e^{-2\pi T_{\rm FI}} \\ \Lambda_{\lambda_{\rm S}} &= e^{-\sqrt{\lambda_{\rm S}}} = e^{-2\pi T_{\rm DI}}, \end{cases} \text{ where } \lambda_{\rm S} = \frac{(4\pi N)^2}{\lambda} \text{ is an S-dual 't Hooft coupling}$$

· Worldsheet instanton effects

[Bargheer Coronado Vieira 2019]

Non-perturbative effects implied by $SL(2,\mathbb{Z})$

- · A surprising consequence of modular invariance:
 - Convergence of the weak-coupling expansion of $\mathcal{O}(\tau)$ implies non-perturbative effects both at $N\gg 1$ and at strong coupling (at fixed orders in the genus expansion)
 - The **non-perturbative scale** is set by the radius of convergence $|\lambda| < \lambda_*$ of the weak-coupling expansion
- In $\mathcal{N}=4$ SYM, $\lambda_*=\pi^2$ is generic. This implies the non-perturbative scales Λ^2_λ and $\Lambda^2_{\lambda_S}$ (for $\lambda\gg 1$ and $\lambda_S\gg 1$ respectively):

$$\begin{cases} \Lambda_{\lambda} &= e^{-\sqrt{\lambda}} = e^{-2\pi T_{\rm FI}} \\ \Lambda_{\lambda_{\rm S}} &= e^{-\sqrt{\lambda_{\rm S}}} = e^{-2\pi T_{\rm DI}}, \end{cases} \text{ where } \lambda_{\rm S} = \frac{(4\pi N)^2}{\lambda} \text{ is an S-dual 't Hooft coupling}$$

· Worldsheet instanton effects

[Bargheer Coronado Vieira 2019]

Allowing for instanton-anti-instanton effects

- Essentially the exact same structure persists for $f_{\rm np}(s) \neq 0$.
 - one lesson: at strong-coupling, integer powers of $1/\lambda \Leftrightarrow f_{\rm np}(s) \neq 0$
- · At the end of the day, the strong-coupling expansion is slightly modified

$$\mathcal{O}_0(y) \approx C(N) - \sum_{g=0}^{\infty} N^{2-2g} \sum_{m=0}^{\infty} \left(a_m^{(g)} \lambda^{-\frac{m+3}{2}} + b_{\alpha_m}^{(g)} N^{-2-2m} \lambda^{\alpha_m} \right)$$

5. Supergravity as an emergent ensemble average

- The general expression for the strong-coupling expansion has striking consequences
- Given the large-N expansion of the average (turning $f_{\rm np}(s)$ off for clarity):

$$\langle \mathcal{O} \rangle = \frac{1}{2} \sum_{g=0}^{\infty} N^{2-2g} \left(\underbrace{f_{\mathbf{p}}^{(g)}(1)}_{\langle \langle \mathcal{O}^{(g)} \rangle \rangle \equiv \frac{1}{2} f_{\mathbf{p}}^{(g)}(1)} + N^{-1} f_{\mathbf{p}}^{(g)}(0) \right)$$

 Then the large-N limit of the average is the only term that survives the strongcoupling limit:

$$\mathcal{O}_0(\mathbf{y}) \approx \sum_{g=0}^{\infty} N^{2-2g} \left[\langle \langle \mathcal{O}^{(g)} \rangle \rangle - \sum_{m=0}^{\infty} \left(\mathbf{a}_m^{(g)} \lambda^{-m-\frac{3}{2}} + \mathbf{b}_m^{(g)} N^{-2-2m} \lambda^{m+\frac{1}{2}} \right) \right]$$

40

Supergravity as an emergent ensemble average

• In other words, we have arrived at a large-N equivalence between **strong** coupling and ensemble averaging in $\mathcal{N}=4$ SYM:

$$\langle \mathcal{O} \rangle \stackrel{!}{=} \mathcal{O}(\lambda \to \infty) = \mathcal{O}_{\text{sugra}}$$

· This extends to all loop orders:

$$\mathcal{O}_0^{(g)}(\lambda \to \infty) = \langle \langle \mathcal{O}^{(g)} \rangle \rangle$$

29 / 40

Supergravity as an emergent ensemble average

- Obviously, the traditional holographic paradigm is left entirely intact
- Only the strongly-coupled theory at large N, dual to bulk supergravity, **emerges** as an ensemble average
 - As in low-dimension dualities, averaging generates a simple (extremal) bulk dual
- Perhaps there are scenarios where the average can be studied more easily than the strongly-coupled observable (cf. averaged spectral gap at large central charge in Narain ensemble average [Afkhami-Jeddi Cohn Hartman Tajdini 2020])
- · Immediate corollary:
 - Any observable that diverges as $\lambda \to \infty$ cannot be modular invariant (e.g. Konishi anomalous dimension)

Pirsa: 22030031

6. Statistics of the $SL(2,\mathbb{Z})$ ensemble

- We are thus motivated to study the **statistics** of CFT observables in the $SL(2,\mathbb{Z})$ ensemble
- · We have seen that the spectral decomposition cleanly picks out the ensemble average

$$\mathcal{O}(\tau) = \left< \mathcal{O} \right> + \underbrace{\mathcal{O}_{\rm spec}(\tau)}_{\left< \mathcal{O}_{\rm spec} \right> = 0}$$

• e.g. the variance is straightforwardly computed in terms of the spectral overlaps:

$$\mathcal{V}(\mathcal{O}) = \langle \mathcal{O}^2 \rangle - \langle \mathcal{O} \rangle^2$$

$$= \langle \mathcal{O}_{\text{spec}}^2 \rangle$$

$$= \text{vol}(\mathcal{F})^{-1} \left[\int_{\text{Re } s = \frac{1}{2}} \frac{ds}{4\pi i} | (\mathcal{O}, E_s)|^2 + \sum_{n=1}^{\infty} (\mathcal{O}, \phi_n)^2 \right]$$

"Second moment in spectral space 40

The variance at large N

 At large N, the variance is parametrically suppressed compared to the mean-squared (but still puzzlingly large):

$$\frac{\mathcal{V}(\mathcal{O})}{\langle \mathcal{O} \rangle^2} \sim \frac{1}{N}$$

• Moreover, the 1/N expansion is **quadruple-factorially divergent**, leading to non-perturbative effects in powers of Λ_N^2 , where

$$\Lambda_N \equiv e^{-4\sqrt{\pi N}}$$

7. Wormholes in moduli space & emergent averaged holography

- Our results are especially interesting in light of recent developments in lowdimensional quantum gravity
 - 2d: JT gravity ←→ double-scaled random matrix integral [Saad Shenker Stanford 2019]
 - 3d: exotic "U(1) gravity" \longleftrightarrow averaged Narain lattice CFT [Maloney Witten; Afkhami-Jeddi Cohn Hartman Tajdini 2020]
- · Spacetime wormholes play an important role in these dualities
- · Leads to some natural questions in conventional holographic dualities:
 - What (other) bulk ingredients are needed for factorization of multi-boundary observables? [Saad Shenker Stanford Yao; Blommaert Kruthoff; Blommaert Iliesiu Kruthoff 2021]
 - In a product of observables in two decoupled CFTs, why are there contributions that appear to correlate them? (When and how do they appear?)
 Where are wormholes in the bootstrap?

33

公

 $N \to \infty$

Pirsa: 22030031 Page 36/39

40

Wormholes in moduli space

 Our results resonate with recent work on factorization in low-dimensional models of quantum gravity [Saad Shenker Stanford Yao; Blommaert Kruthoff; Mukhametzhanov; Blommaert Iliesiu Kruthoff 2021]

$$\mathcal{O}(\tau) = \underbrace{\langle \mathcal{O} \rangle}_{\sim \mathcal{O}_{\text{sugra}}} + \underbrace{\int \frac{ds}{4\pi i} (\mathcal{O}, E_s) E_s(\tau) + \sum_{n=1}^{\infty} (\mathcal{O}, \phi_n) \phi_n(\tau)}_{\mathcal{O}_{\text{spec}}(\tau): \text{ "half-wormhole"}}$$

• To probe ensemble statistics, consider higher powers of $\mathcal{O}_{\mathrm{spec}}(\tau)$:

$$\mathcal{O}_{\mathrm{spec}}(\tau)^2 = \underbrace{\mathrm{vol}(\mathscr{F})^{-1} \left[\int \frac{ds}{4\pi i} |(\mathscr{O}, E_s)|^2 + \sum_{n=1}^{\infty} (\mathscr{O}, \phi_n)^2 \right]}_{\mathscr{V}(\mathscr{O}): \text{"wormhole"}} + \underbrace{\int \frac{ds}{4\pi i} (\mathscr{O}_{\mathrm{spec}}^2, E_s) E_s(\tau) + \sum_{n=1}^{\infty} (\mathscr{O}_{\mathrm{spec}}^2, \phi_n) \phi_n(\tau)}_{\mathrm{coupling-dependent fluctuations around } \mathscr{V}(\mathscr{O})}$$

Pirsa: 22030031

Wormholes in moduli space

 We have **not** identified the bulk configurations/stringy degrees of freedom that give the noisy contributions responsible for factorization for any particular observable

- Rather, we have shown concretely how ensemble statistics (& correspondingly connected bulk configurations) can play a role even in a fixed instance of $\mathcal{N}=4$ SYM
 - Meaningful holographically because $\langle \mathcal{O} \rangle = \mathcal{O}_{\text{sugra}}$
 - Does the variance have a spacetime wormhole interpretation in semiclassical gravity? Does the answer depend on the type of observable? [Schlenker Witten 2022]

40

Pirsa: 22030031 Page 38/39

Future directions

- Obvious, urgent question: to what extent does this story generalize to other string/M-theory vacua?
 - Automorphic averages over U-duality groups? Ensemble averages over conformal manifolds? Over all directions in moduli space, or just the "gravity direction"?
- · Other observables (and other S-duality groups):
 - Other integrated correlators, e.g. $\langle 22pp \rangle$
 - Ambitiously: unintegrated correlators
 - Observables particularly sensitive to statistics of high-energy states (thermal observables?)
 - Extremal correlators $\langle \mathcal{O}_p \overline{\mathcal{O}}_p \rangle$ in 4d $\mathcal{N}=2$ SQCD
- Better understand worldsheet and spacetime perspectives on non-Borel summability of $AdS_5 \times S^5$ string theory and the semiclassical bulk meaning of the variance
- · "Bootstrapping in spectral space"
- Statistics of CFT data over conformal manifolds (cf. [Afkhami-Jeddi Ashmore Córdova 2021])
- Cusp forms and arithmetic chaos in $\mathcal{N}=4$ SYM

37