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Abstract: | will present an argument that if a theory of quantum gravity is physically discrete at the Planck scale and the theory recovers General
Relativity as an approximation, then, at the current stage of our knowledge, causal sets must arise within the theory, even if they are not its basis. |
will argue in particular that an apparent alternative to causal sets, viz. a certain sort of discrete Lorentzian simplicial complex, cannot recover

Genera Relativistic spacetimes in the appropriately unique way. For it cannot discriminate between Minkowski spacetime and a spacetime with a
certain sort of gravitational wave burst.
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Recovering General Relativity from a Planck scale faupouker gy
discrete theory of Quantum Gravity
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(Butterfield and Dowker arXiv:2106.01297)

Pirsa: 22030027 Page 2/26



Pirsa: 22030027

Make two assumptions about a quantum gravity theory X:
Al: X recovers GR and A2: Xis Planck scale discrete

Flesh out these assumptions in a series of comments: introduce
concepts of grounding state, Discrete Physical Data (DPD) and
Discrete-Continuum correspondence (DCC) for theory X

State and briefly justify two Claims:

Cl. Causal sets (Discrete orders) can recover GR spacetimes

C2.There is no other proposal to date for a DPD-set that does the job

Explain why “quantum uncertainty” does not invalidate the argument

Conclusion

Fay Dowker-
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Quantum Gravity Theory X

Fay Dowker-

Assumption |. Theory X recovers GR as an approximation in
certain states (physical situations), at macroscopic scales.

Assumption 2. X s physically discrete at the Planck scale
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Comments |

. Analogies: (@) GR recovers Newtonian gravity as an approximation (b) idiRovke
Molecular dynamics recovers fluid dynamics as an approximation (continuum is
emergent) (c) Quantum mechanics recovers classical mechanics as an
approximation (either in a way that is already set out or in a way that is yet to
be set out).

. X must recover a large class of 4-dimensional GR spacetimes including
gravitational waves, large portions of Minkowski space, black holes and
expanding cosmologies. All recovered spacetimes vary slowly on Planckian
scales.

. X has, for each GR spacetime (M,g) to be recovered, a grounding state
which contains/produces/gives rise to a set of Discrete Physical Data
(DPD) from which (M,g) can be recovered essentially uniquely i.e. (M,g) is a good
approximation to the DPD-set.

. The DPD-set contains no geometrical information about the GR spacetime at
smaller than Planckian length/time/volume scales.
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Comments |l

5. There must be a Discrete-Continuum-Correspondence (DCC-X) for
theory X,

DPD-set === GR SPACETIME

that says (up to some tolerance) when a GR spacetime is recovered from a DPD-
set. c.f. molecular state =@ fluid state

6. Essential uniqueness is necessary for the DCC-X to hold water:

If (M,g) and (M’, g’) are both recovered by the same DPD-set according to DCC-
X, then we must have that (M,g) and (M',g’) are approximately isometric and
physically indistinguishable on large scales c.f. if two fluid states are recovered from
the same molecular state, they must be approximately the same and physically
indistinguishable on large scales. This underpins the concept of recovery of one
theory from another. It underpins what we mean when we say that ®uantum
gravity is more fundamental than GR.

Fay Dowker
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Comments |l

Fay Dowker

7. No assumption is made about the nature of the grounding state (might be a
state in a Hilbert space or something entirely different such as a co-event in a path-
integral-based framework).

8. No assumption is made about how the state gives rise to the DPD (they might
be expectation values of or eigenvalues of certain self-adjoint operators, or not;
their deduction from the state could involve some kind of coarse graining, or
involve matter degrees of freedom or rely on more-or-less anthropocentric
arguments involving observers, or ...).
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Two Claims

Fay Dowker

Claim |: A causal set—a locally finite partial order—is a set of DPD
that, taken as being discrete on the Planck scale, can recover a GR
spacetime as a continuum approximation.

Claim 2: There is in the current literature no other proposal for a set
of Planck scale DPD that can recover a GR spacetime as a continuum
approximation.
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What X recovers

Fay Dowker

Lorentzian geometry is
very different from
Riemannian geometry

Causal order is central
to the physics of GR.

Lorentzian geometry is (bordering on) non-local and the notion of “physically
close” is not captured well in any picture: the chosen frame is an impediment to
understanding Lorentzian geometry.

A

Nonlocality: the points one Planck time in the future of P in Minkowski space lie on
an infinite spatial hyperboloid that asymptotes to the future light cone.
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Claim I:

Fay Dowker

transitive, directed, acyclic graph Continuum approximation (fluid)
= causal set = discrete order

- After

\. ®
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I

Before
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Claim | (Order + Number = Lorentzian Geometry)

The Discrete-Continuum Correspondence for causal sets : —

A causal set C recovers (M,g) if C faithfully embeds in (M,g) at Planck density:
there exists an embedding C — M such that

(i) Number=2 Volume in large, physically nice regions (uniform) and

(ii) The order of C equals the causal order of the embedded points in (M,g)

As far as we know, the distribution of embedded points must be random

. Kronheimer-Penrose-Hawking-Malament theorem: Causal order + Volume =
Lorentzian Geometry. The order of a causal set provides the spacetime causal
order and the counting measure provides the volume (c.f. Riemann)

. At infinite density, a faithfully embedded causal set —> (M,g) (Meyer and Sorkin)

. Direct evidence: e.g. dimension (Myrheim-Meyer), geodesic proper time

(Myrheim, Brightwell&Gregory, Bachmat), scalar curyature (Benincasa&Dowker,
Glaser)
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Claim 2: Combinatorial Lorentzian Regge Complex

Proposal for alternative DPD-set: A Combinatorial Lorentzian Regge Complex
(CLRC) is a combinatorial simplicial complex plus Lorentzian edge-length (and, if
appropriate, future direction) labels on the |-simplices (edges) which are no
more than a few in Planck units. There is no geometrical information in the
interior of the simplices: that would be continuum information.

Note, this picture is slightly
misleading: the edges in a CLRC
have "length" labels but no
continuum geometry.

Fay Dowker
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Evidence for Claim 2

A Discrete-Continuum Correspondence for CLRCs: Fay Dowker

A CLRC recovers (M,g) if the CLRC
(i) is the combinatorial complex derived from a triangulation of manifold M

(ii) vertices can be embedded in (M,g), consistent with that triangulation, such that the
spacetime geodesics between the embedded vertices have proper lengths = CLRC
edge-length labels in Planck units (approximately)

This DCC-CLRC fails:

There exists a CLRC that (according to this DCC) “recovers’” Minkowski space and

also “recovers” a spacetime that is a pErturbation of Minkowski space with a

physical, plane fronted gravitational wave burst.
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Example baseg{l on integer lattice in 3+ | dims

. . 3t

Define a CLRC built from a Fay Dowker
triangulation of Minkowski space:

® 24 4-simplexes in each
hypercube
There are 15 edges from the
oridin in hypercube |: 1 edge
is timelike, 3 are null and the
rest are spacelike.
The CLRC is the
combinatorial complex with
edges decorated with their
Lorentzian lengths + future
direction (for the timelike and
null ones)
Note: no vertices in the
shaded region: it’s a void

No continuum info (otherwise
this would just be Mink space)
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Example baseg{l on integer lattice in 3+ | dims

. . 3

Define a CLRC built from a
triangulation of Minkowski space:

® 24 4-simplexes in each
hypercube
There are 15 edges from the
origin in hypercube I: 1 edge
is timelike, 3 are null and the
rest are spacelike.
The CLRC is the
combinatorial complex with
edges decorated with their
Lorentzian lengths + future
direction (for the timelike and
null ones)
Note: no vertices in the
shaded region: it's a void

- -2

N
The CLRC-DCC says that this CLRC No continuum info (otherwise

"recovers" Minkowski space this would just be Mink space)

Fay Dowker
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Example baset.il on integer lattice in 3+ | dims

3e
Fay Dowker

—2e

ds? = —dt? + dz? + (1 — h(u))dz? +l(1 + h(u))dy® (1)

1
h(u) #0 in 0<u<1 and f duh(u) =0
0
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Example baset.il on integer lattice in 3+ | dims

3e
Fay Dowker

The CLRC-DCC
says that this same
CLRC "recovers"
the gravitational
wave burst below

(u=tz)

—

2e

ds? = —;itz +dz% + (1 — h(u))dz® + (1 + h(u)Jdy® (1)

1
h(u) #0 in 0<u<1 and f duh(u) =0
0
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This is a physic?lly nice GR spacetime

Fay Dowker

The void is a large, physically
nice region of spacetime.

"width" or "height" of a region can'
be used as a measure of
"niceness" in Lorentzian geom:
null directions!). So instead:

It contains approximately flat
causal diamonds of height 1
second

Lorentz invariance is the key to
this counterexample

To see this: do a Lorentz boost in
the z direction with gamma factor
of 1044}

_2e

{t,z,y,2} 4 {t',z,y,2'}
ds? = —dt"? +d2"? + (1 — H(u'))dz? + (1 + H(v'))dy? (2)
u ~ 10%u, H(u') = h(u) #0,0 < v’ < 10*
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Contrast the E}(Jclidean (Riemannian) case:

3e

The void is NOT a physically nice
region of Euclidean spacetime.

It has physical structure (e.g. its
width) that is smaller than
Planckian

No isometry of Euclidean space
changes that.

Starting with the Riemannian
Combinatorial Complex, filling the
blue region with non-flat
continuum geometry produces a
spacetime with geometry that
varies on the scale of the
discreteness. So this is not a
counterexample to:

Fay Dowker
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Contrast the E}(Jclidean (Riemannian) case:

38

The void is NOT a physically nice
region of Euclidean spacetime.

It has physical structure (e.g. its
width) that is smaller than
Planckian

No isometry of Euclidean space
changes that.

Starting with the Riemannian
Combinatorial Complex, filling the
blue region with non-flat
continuum geometry produces a
spacetime with geometry that
varies yon the scale of the
discreteness. So this is not a
counterexample to:

Conjecture: There exists a Discrete-Continuum Correspondence for
Combinatorial Riemannian Regge Complexes that succeeds

Fay Dowker
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Example baseﬁ! on integer lattice in 3+ | dims

. L] 3

Define a CLRC built from a =
triangulation of Minkowski space:

® 24 4-simplexes in each
hypercube
There are 15 edges from the
origin in hypercube I: 1 edge
is timelike, 3 are null and the
rest are spacelike.
The CLRC is the
combinatorial complex with
edges decorated with their
Lorentzian lengths + future
direction (for the timelike and
null ones)
Note: no vertices in the
shaded region: it's a void

No continuum info (otherwise
this would just be Mink space)
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Contrast the E}(Jclidean (Riemannian) case:

3e

The void is NOT a physically nice
region of Euclidean spacetime.

It has physical structure (e.g. its
width) that is smaller than
Planckian

No isometry of Euclidean space
changes that.

Starting with the Riemannian
Combinatorial Complex, filling the
blue region with non-flat
continuum geometry produces a
spacetime with geometry that
varies on the scale of the
discreteness. So this is not a
counterexample to:

Conjecture: There exists a Discrete-Continuum Correspondence for
Combinatorial Riemannian Regge Complexes that succeeds

Fay Dowker
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Example baset.il on integer lattice in 3+ | dims

3e
Fay Dowker

The CLRC-DCC
says that this same
CLRC "recovers"
the gravitational
wave burst below

(u=tz)
——

2e

ds? = —;itz +dz% + (1 — h(u))dz® + (1 + h(u))dy® (1)

1
h(u) #0 in 0<u<1 and f duh(u) =0
0
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What about other alternative DPD-sets!?

e Whatever the DPD-set is in theory X, without a Number-Volume
correspondence in the DCC-X, there will be large, physically nice
void/ sparse regions.

When there are large, physically nice voids, any DCC-X will fail
because the DPD-set cannot recover the Lorentzian geometry in

the voids.

If one demands the Number-Volume correspondence in the DCC-
X, there is only one proposal for DPD-sets in the literature:
causal sets
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Conclusion

No matter what X is fundamentally, if the assumptions hold, then at
the point where a GR spacetime needs to be recovered, there is at
present no entity in the literature other than a causal set that can do
the job of recovery that Discrete Physical Data in a grounding state

in X must do.
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Conclusion

Fay Dowker

No matter what X is fundamentally, if the assumptions hold, then at
the point where a GR spacetime needs to be recovered, there is at
present no entity in the literature other than a causal set that can do
the job of recovery that Discrete Physical Data in a grounding state

in X must do.

Thank you for listening
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