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Abstract: In recent years, generalizations of the notion of symmetry have significantly broadened our view on states of matter. We will discuss some
recent progress of understanding and realizing the "fractal symmetry”, where the symmetric chargei.e. the generator of the symmetry is defined on a
fractal subset of the system with a noninteger or more generally irrational Hausdorff dimension. We will introduce a series of models with exotic
fractal symmetries, which can in general be deduced from a "Pascal Triangle" (also called Yang Hui Triangle in ancient China) symmetry. We will
discuss their various features including quantum phase transitions. We will also discuss the potential realization of these phases and phase
transitions in experimental systems, such as the highly tunable platform of Rydberg atoms.

Zoom Link: https://pitp.zoom.us/meeting/register/tdcgc-ihgzMvHAW-Y Bm7mY d_XP9Amhypv5vO
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Experimental Platform

Content:

1, fractal and subsystem symmetry, and SSB of fractal symmetry
(defined as “fractal order™);

2, “Pascal triangle (Yang Hui triangle)” fractal symmetries and
realizations, which unifies a series of fractal symmetries;

3, quick review of Rydberg atoms;

4, realizing fractal symmetry and fractal order with Rydberg atoms.

Reference:
arX1v:2108.07765, arX1v:2110.02237
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Fractals in nature:
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Newman-Moore (1999)-Yoshida (2013)
1. All down-facing triangles favor to have either “3-up” spins, or
“2-down, 1-up” spins. Large number of excited states.
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2, no phase transition at finite temperature; the
three-spin correlation function is short ranged
by still have fractal structure. r=2"

r,log 3/log?2
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v

3, fractal symmetry: for a lattice (periodic be) with size L2, with L =
2k -1, the model has an explicit symmetry: the Hamiltonian is
invariant under flipping spins on a Sierpinski triangle.
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Hyst = E —Kojoi05 — E ho?.
v b j

4, quantum version of fractal symmetry: for a lattice (periodic bc)
with size L2, with L = 2¥ -1, Prod ¢ * on the Sierpinski triangle is a
conserved quantity.
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Subsystem symmetry:

Early examples: 1, 2+1d Bose metal, Paramekanti, Balents, Fisher,

2002 (PBF) o
Ho = % Z(nr - ﬂr)2 — K Z cos(Azydr),

—_

r r

A.r_:;(f)r = @r — (J)rﬁ)"c = ﬂjr+y + Ory X+y -

¢ = ¢ + f(x) + 9(¥)

line (both directions) are conserved, as e is
the creation operator of a boson. The system
behaves a lot like 1d boson, 1.e. no
superfluid phase, but a power-law algebraic
phase of dipoles.

1d symmetry, boson number # along each > g
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Subsystem symmetry:

Early examples: 2, 2+1d Ising plaquette model (Xu, Moore, 2003),
H=-K) ojoj050; —h) of.
a i

Also has 1d subsystem symmetry which flips the spins on each
line, along both directions. Prod o * along each line is a conserved
quantity. Also behaves like 1d quantum Ising model:

1, self-duality at zero temperature;

2, quantum phase transition at # = K (between an ordered phase at
K > h with spontaneous subsystem symmetry breaking, and a
disordered phase at # > K);

3, no classical phase transition at finite temperature.
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Subsystem symmetry + “Topological” order: Fracton topological
order. Type-I: conserved charges on an ordinary subset of the lattice
such as a line, or plane (Chamon’s model, X-cube model, etc.); type-
II, conserved charges on a fractal subset of the lattice (Haah’s code)
Review of fracton: arXiv:1803.11196, Nandkishore, Hermele;
arX1v:2001.01722, Pretko, You, Chen

This talk will focus on type-II subsystem symmetries. The simple
model with the type-II subsystem symmetry is the one we discussed:
Newman-Moore (1999)-Yoshida (2013) model, or the Sierspinki-

triangle model.

Hgt = E —Kojos03,
v
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Hgst = E —Kojo505 — E ho? .
v j

5, self-duality (arXiv:2105.05851, Zhou, Zhang, Pollmann, You);
like the 1+1d quantum Ising model, and the 2+1d quantum
plaquette model with subsystem symmetry: there is (likely) a
quantum phase transition at 2 = K.
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Hgst = Z —Kojos05 — Z hoj.

v j
5, self-duality (arXiv:2105.05851, Zhou, Zhang, Pollmann, You);
like the 1+1d quantum Ising model, and the 2+1d quantum
plaquette model with subsystem symmetry: there is (likely) a
quantum phase transition at 2 = K.

6, the quantum phase transition at #=K separates two phases:

K > h is a spontaneous symmetry breaking phase of the fractal
symmetry, or “fractal ordered” phase, with farge ground state
degeneracy with system size . = 2¥ -1, and nonzero <¢ “> in the
ground state;

K < his a disordered phase with a nondegenerate ground state and
Zero <@g ==,
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Hyst = E —Kojojo5 — E hof.
J

v
7, nature of the quantum phase transition at 7 = K ?

Theoretically, no well established field theory for spontaneous
breaking of fractal symmetry yet, no RG analysis...

Numerically, earlier result suggests a first order transition (Vasiloru,
et.al. arXiv:1911.11739); more recent work suggests a continuous
phase transition (Zhou, et.al. arXiv:2105.05851).

Gz(r) = (6®(0)a*(r)) ~ TS A=1n3/In2
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A U(1) generalization of the Sierpinski triangle model has a “Pascal
triangle” “symmetry” (Myerson-Jain, et.al. arXiv:2110.02237)

i, = > —tcos (01 + 02 + 03)
v

“Pascal triangle” (Yang Hui triangle) transformation:
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A U(1) generalization of the Sierpinski triangle model has a “Pascal
triangle” “symmetry” (Myerson-Jain, et.al. arXiv:2110.02237)

i, = > —tcos (01 + 02 + 03)

“Pascal triangle” (Yang Hui triangle) transformation:

AR 2 S
ZE=F
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A Z, generalization of the Sierpinski triangle model each has a
different fractal symmetry (Myerson-Jain, et.al. arXiv:2110.02237),
with fractal dimension

In(p(p+1)/2)

d
Calr =p*) ~ve 2T 8 dy =
3(r = p~) € H Ing

All these fractal symmetries can be deduced from the Pascal triangle

1 4 6 4 1

1 51010 5 1 /\ A

1 6 152015 6 1 /\/g/%\/@\
1 7 21353521 7 1

1 8 28 56 70 56 28 8 1 W\/\'ﬁ/\i
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Closer look at the U(1) quantum Pascal triangle model:

U .
Hg_uya) = Z —tcos (0, + 05+ 03) + Z ?”7)
" J

The full symmetries: a global U(1) x U(1) symmetry besides the fractal
symmetry. The classical ground states in the limit U=0 spontaneously
breaks all symmetries.

Is the SSB (order) stable against quantum fluctuation at finite U ? is
there an “order-disorder” quantum phase transition at finite U ?

“Standard” procedure: assuming the semiclassical order, go to the dual
picture, analyze the stability of the semiclassical order in the dual
theory. Example: the SSB of the 1-form symmetry of U(1) gauge field
is instable against confinement, this can be shown in the dual theory.
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Closer look at the U(1) quantum Pascal triangle model:

U .
Hg_uya) = Z —tcos (0, + 05+ 03) + Z ?”7)
" J
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The Gaussian theory of the semiclassical order is “self-dual” (like the

Sierspinki triangle model); the semiclassical order is destroyed by
weak quantum fluctuation U.
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Closer look at the U(1) quantum Pascal triangle model:

U .
Hg_uya) = Z —tcos (0, + 05+ 03) + Z 7.”;?!
v } e

1, a standard way of analyzing the Z clock model, is to start with the
U(1) model and turn on Z, anisotropy; the algebraic phase of the U(1)
model reduces to the Z, ordered phase. But in the current case, this
approach may be complicated by extra fractal symmetries.

2, though the generic U(1) model has no semiclassical order (or quasi-
long range order), there is a fine-tuned multi-critical point, like the
“Rokhsar-Kivelson point” of the quantum dimer model. (Myerson-Jain
etl.al. in progress) N
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Closer look at the U(1) quantum Pascal triangle model:

U .
Hg_uya) = Z —tcos (0, + 05+ 03) + Z 7.”;?!
v } e

3, Open question: a “field theory” (low energy effective theory) with
the fractal symmetry ?

For type-I models, one can usually start the discussion with a “field
theory”, which captures a lot of key physics. For example, the 2+1d
Bose metal, 2002, PBF

U .
Ho = 3 E (ny — ﬂ)z - K E cos(Azydr),
L= = ((0:0)° + (0:0,0)%)
21{- T Ty
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Rydberg atoms:

A highly excited state of an atom, one electron is excited to a state
with large principal quantum number.

Hydrogen Atom Rydberg Atom

electron with -1 charge
—% —

| & ®)
\  proton with +1 charge | ' : '
core with +1 charge

Y .
electron with -1 charge

B = Lo E, = _L
"7 n2 " (n = 6)?
: n,l
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Rydberg atoms:

A highly excited state of an atom, one electron is excited to a state
with large principal quantum number.

Two Rydberg atoms interact strongly through dipole moment
fluctuation, the Van der Waals potential, which scales very strongly
with the principal quantum number:

Vi(r) ~ (— C ~n'

Dipole-dipole interaction decays as 1/73. The Rydberg state itself
may not have dipole moment; the 1/ 7° interaction is a second order
perturbation.
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Rydberg atoms:

Consider an atom-photon coupled system (cavity QED), and atom is
coupled with photons whose energy is close to the resonant
frequency between ground state and Rydberg state. Define a number
operators:

m=0=|g,N,+1), [p=1)=]|r,N,).

For a multi-atom system that is arranged in an array, or a lattice:
H = Z Q07 + Hy, Hy=— Z 0;1; + Z Vi,
; i ij

Review article on Rydberg atoms: Browaeys, Lahaye, Nature
Physics, 16, 132-142 (2020)
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Realizing strongly correlated phases with Rydberg atoms
Example: Z, spin liquid/topological order, Samajdar, et.al. 2020,
Verresen et.al. 2020, Semeghini, et.al. 2021

fﬂ.

by tuning parameters in the Hamiltonian, neighboring Rydberg
atoms are strongly suppressed; the allowed configurations of
Rydberg atoms are equivalent to a quantum dimer model on a
triangular lattice, which can host a Z, topological ordered state.

Ha = —35 56 (OO + he)
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Can we realize the quantum Sierpinski triangle model?

Hgyst = E _—Ix’ofag({é - E hoj.
j

v

The difficulty is the 3-body interaction; as condensed matter
systems are generally dominated by 2-body interactions. Let’s
consider a honeycomb lattice, which is a decorated triangular lattice:
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3
Hoa = V(200 + ft,1 + N22 + 143 — 2)” + Z UTLa Tt i
t=1
We trap “target” atoms on sublattice B of the honeycomb lattice
(vertices of the triangular lattice); and “auxiliary” atoms on
sublattice A (centers of down-triangles). Target atoms and auxiliary
atoms have principal quantum numbers nz and n, respectively.

IO
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-
/
/

3
: A - . oy e o
Hyoq = V(2a+141+ 02+ 73—2)" + E Uilg Nt i

=1

Ground states of /1;: == o =1 —2n, == Ground states of g

(1} fia=1, fiyq=10; (1) of =03 =03 = +1;

or (2) fia =0, two of A ; = 1. or (2) Two of o] = —1.
N

L ] 1.‘!;;;
L

»
3>

N3
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3

r 6y ) - - ' 2 - -
Hyoq = V(2g+141+0e 2+ 73 —2)" + E Vilg Nt i

All the states of the spin
model is mapped to the
low energy Hilbert space
of the atomic system with
the same degeneracy;

All the extra states of the
atomic system have higher
1 (- g A e —

x4
2K |4
x4

x4

x4

b i=1
o® =(+1,+1,+41), Energy = - K
(Nt.i:Maq) = (0,0,0;1), Energy = 0;
o°=(-1,-1,41), Energy = —K,
(fg.4;Mq) = (1,1,0;0), Energy = 0;
o0 =(-1,4+1,4+1), Energy =+K,
(Rt.537a) = (1,0,0;0), Energy =V;
o =(-1,-1,-1), Energy =+K

(fr.4;10) = (1,1,1;0), Energy = V.
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3
Hoo = V(2ig+041 + N2+ N3 —2) + E Vgt i

=1

3 3
~ V Z 4dngne.; + Z 21y iTig, 5 — 4t — Z 3¢
i=1 i<j i=1
3

+ 3 vhafiegee ®

=1

The physics described can be realized by choosing (for example) n,
= 113 and n, = 76 for potassium atoms. Because the VdW
interaction between Rydberg atoms decays fast with distance,
perturbations (further neighbor interactions, etc.) are small. For
example:

V! 1 T 1 V.,
BB — ~0.037, —AB = — A5 1 0.041.
Vs (V/3)¢ Vs 2° Vgs
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Experiment visualization of fractal shape: slow manipulation on the
corners of the Sierpinski triangle can spontaneously generate a
Sierpinski-triangle shape of excitations.

\\/\ /\ /\\/ /,-\f‘r\‘/‘\/\_‘/\\ ,
¥ X
() \ ; :

"4 % i i b
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/ / / ANAYA
TAVAVAVAVAVAVAVAVAVAY JAVAVAVAVAVAVAVAVAVA

AVAVAVAVAVAVA /
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VNVNNNNNNNY \VAVAVAVAVAVAVAVAVAY;
AN /-\ / i :

AAAAAAAAA
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Fast manipulation of parameters can probe quantum dynamics of the
system. Fractal subsystem symmetry can lead to exotic dynamics.
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] ] ij

Turn on the Rabi oscillation term can potentially drive a quantum
phase transition like the one in the quantum Sierpinski triangle model.

Experimentally, one can take “snapshots™ of the configurations of the
atoms; by averaging over many snapshots < o ¢ ... > we obtain the
correlation function.

Comment:
1, no longer rely on perturbation to generate multi-spin interaction;

2, Perturbations (such as ordinary Ising interaction) may be relevant
or irrelevant at the quantum phase transition. (Zy anisotropy
irrelevant at U(1) WF fixed point for N> 3.)
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Models with other fractal structure

The tetrahedron model also has a fractal symmetry, and its excitations
have a fractal geometry like the Sierpinski triangle model. The four
body interaction can still be simulated through two body VdW
interaction between Rydberg atoms after decorating the center of each
tetrahedron with an auxiliary atom.

Pirsa: 22030025 Page 35/38



irsa: 22030025

Quantum States of Matter with Fractal Symmetries: Theory and
Experimental Platform

“Realization” of the U(1) quantum Pascal triangle model:

JAAAATATAAYA
YA“VA‘YA‘YA‘YA‘YA‘ @4 sublattice Spin-3/2
JATATAVAVAVAVAVARER
AAANANANANA
WAAAAAAA
NN NN/

@5 sublattice Spin-1/2

Ho = Z Z J (Sff"-"'}f_h * S;:)""Ff'f.b) D(S%)?
Ji e
= Z 2 ) (~"'E"~'E.b FS}?NE,,,) - D(5%)%(23)
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“Realization” of the U(1) quantum Pascal triangle model:

JAAAATATAAYA
YA“VA‘YA\YA‘YA‘YA‘ @A sublattice ~ Spin-3/2
JATATAAVAVAVAVARERE
NNV
WAANAANA

@5 sublattice Spin-1/2

, cha@iies gee mi  pummman@Rel ol ol
Hego = Z K ((Sn) Spa1Sr25ra + (SR) “R.l"’f."z'“r{.:;) )
K ~ —. (25)

Heg = Z -tcos (30r —Or1 —Opr2 — OR3)
Re A
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Summary:

1, quantum fractal models, especially their quantum phase
transitions involving fractal subsystem symmetries and their
spontaneous breaking, call for a new theoretical paradigm;

2, models with generalized “Pascal triangle” symmetries, and their
quantum phase diagram;

3, realization of the quantum Sierpinski triangle model which
involves 3-body interaction, through Rydberg atoms with only 2-body
interaction
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